IntroductionMalignant pleural mesothelioma (MPM) is an incurable malignant disease, which results from chronic exposition to asbestos in at least 70% of the cases. Fibroblast activation protein (FAP) is predominantly expressed on the surface of reactive tumor-associated fibroblasts as well as on particular cancer types. Because of its expression on the cell surface, FAP is an attractive target for adoptive T cell therapy. T cells can be re-directed by retroviral transfer of chimeric antigen receptors (CAR) against tumor-associated antigens (TAA) and therefore represent a therapeutic strategy of adoptive immunotherapy.MethodsTo evaluate FAP expression immunohistochemistry was performed in tumor tissue from MPM patients. CD8+ human T cells were retrovirally transduced with an anti-FAP-F19-∆CD28/CD3ζ-CAR. T cell function was evaluated in vitro by cytokine release and cytotoxicity assays. In vivo function was tested with an intraperitoneal xenograft tumor model in immunodeficient mice.ResultsFAP was found to be expressed in all subtypes of MPM. Additionally, FAP expression was evaluated in healthy adult tissue samples and was only detected in specific areas in the pancreas, the placenta and very weakly for cervix and uterus. Expression of the anti-FAP-F19-∆CD28/CD3ζ-CAR in CD8+ T cells resulted in antigen-specific IFNγ release. Additionally, FAP-specific re-directed T cells lysed FAP positive mesothelioma cells and inflammatory fibroblasts in an antigen-specific manner in vitro. Furthermore, FAP-specific re-directed T cells inhibited the growth of FAP positive human tumor cells in the peritoneal cavity of mice and significantly prolonged survival of mice.ConclusionFAP re-directed CD8+ T cells showed antigen-specific functionality in vitro and in vivo. Furthermore, FAP expression was verified in all MPM histotypes. Therefore, our data support performing a phase I clinical trial in which MPM patients are treated with adoptively transferred FAP-specific re-directed T cells.
Combination therapy of adoptively transferred redirected T cells and checkpoint inhibitors aims for higher response rates in tumors poorly responsive to immunotherapy like malignant pleural mesothelioma (MPM). Only most recently the issue of an optimally active chimeric antigen receptor (CAR) and the combination with checkpoint inhibitors is starting to be addressed. Fibroblast activation protein (FAP)-specific CARs with different costimulatory domains, including CD28, Δ-CD28 (lacking lck binding moiety), or 4-1BB were established. CAR-T cells were characterized and antitumor efficacy was tested in a humanized mouse model in combination with PD-1 blockade. Finally, the Δ-CD28 CAR was tested clinically in a patient with MPM. All the three CARs demonstrated FAP-specific functionality Gene expression data indicated a distinct activity profile for the Δ-CD28 CAR, including higher expression of genes involved in cell division, glycolysis, fatty acid oxidation, and oxidative phosphorylation. only T cells expressing the Δ-CD28 CAR in combination with PD-1 blockade controlled tumor growth. When injected into the pleural effusion of a patient with MPM, the Δ-CD28 CAR could be detected for up to 21 days and showed functionality. Overall, anti-FAP-Δ-CD28/CD3ζ CAR T cells revealed superior functionality, better tumor control in combination with PD-1 blockade in humanized mice, and persistence up to 21 days in a patient with MPM. Therefore, further clinical investigation of this optimized CAR is warranted..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.