In the present study, the potential of elemental analysis combined with statistical tools to identify honey origin was evaluated by mineral characterization of 173 honeys of 13 floral types (acacia, fir, spruce, linden, chestnut, lavender, coriander, thistle, honeydew, rosemary, sage, euphorbia and ziziphus plant species) collected from five geographical regions (Slovenia, Croatia, Bulgaria, Turkey, and Morocco). The objective of the study was to accurately and reliably differentiate the mineral composition among honey varieties. The aim was to establish traceability, to ensure product authenticity and to improve quality control measures within the honey industry. For this purpose, 18 major, minor and trace elements were quantified using microwave digestion, followed by ICP-MS measurement. Statistical evaluation of elemental concentration was undertaken using principal component analysis (PCA) to distinguish honey floral types. The research give light on the specific elements that can serve as indicators for determining the geographical and botanical source of honey. Our findings indicate that certain elements, such as Mn, K, and Ca, are primarily influenced by the type of pollen present in the honey, making them indicative of the floral source. On the other hand, levels of Na, Mg, and Fe were found to be more strongly influenced by environmental factors and can be considered as markers of geographical origin. One novel aspect of this research is the exploration of the relationship between honey minerals and honey botanical source. This was achieved through the analysis of chestnut tree samples and a subsequent comparison with the composition of chestnut honey.