Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.
The paper presents several theories related to definitions of powers and power factors in non-sinusoidal and non-symmetrical regimes. The theories must meet some requirements: (a) to facilitate the measuring of power quantities by using acquired electrical waveforms; (b) to support the correct quantification of powers and power factors for a fair charge; (c) to support solutions for efficient compensation of non-sinusoidal and non-symmetrical regimes, simultaneous with the power factor compensation along the fundamental harmonic. Only theories meeting the above-mentioned requirements are approached. Aspects specific to power definitions are discussed and commented. Three theories rely on the Fourier decomposition of non-sinusoidal waveforms, valid only for steady signals, whilst the fourth relies on the Discrete Wavelet Transform (DWT) and can also be applied to unsteady signals. Dedicated original data acquisition systems were used to acquire experimental data for three case studies. Data were analysed with original software tools, based on the Fast Fourier Transform and Discrete Wavelet Transform, implementing the approached theories. Comparisons between results yielded for analogue quantities proved that the approached theories satisfy the requirements for which they were created, except for the fourth theory, which can be used only for compensation purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.