Histological analysis is meaningful in diagnosis only if the targeted tissue is obtained in the biopsy. Often, physicians have to take a tissue sample without accurate information about the location of the instrument tip. A novel biopsy needle with bioimpedance-based tissue identification has been developed to provide data for the automatic classification of the tissue type at the tip of the needle. The aim of this study was to examine the resolution of this identification method and to assess how tissue heterogeneities affect the measurement and tissue classification. Finite element method simulations of bioimpedance measurements were performed using a 3D model. In vivo data of a porcine model were gathered with a moving needle from fat, muscle, blood, liver, and spleen, and a tissue classifier was created and tested based on the gathered data. Simulations showed that very small targets were detectable, and targets of 2 9 2 9 2 mm 3 and larger were correctly measurable. Based on the in vivo data, the performance of the tissue classifier was high. The total accuracy of classifying different tissues was approximately 94%. Our results indicate that local bioimpedance-based tissue classification is feasible in vivo, and thus the method provides high potential to improve clinical biopsy procedures.
Nanocrystalline titanium dioxide was prepared via aerosol pyrolysis of titanium alkoxide precursor at 200-580°C in air and in nitrogen atmospheres. Powders were characterized by x-ray diffraction, thermogravimetric analysis, Brunauer-EmmettTeller analysis, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, x-ray fluorescence, Raman and infrared spectroscopy, and Berner-type low-pressure impactor. The anatase phase transition was initiated at 500°C in nitrogen and at 580°C in air. Under other conditions amorphous powders were observed and transformed to nanocrystalline TiO 2 via thermal postannealing. In air, smooth and spherical particles with 2-4-m diameter were formed with an as-expected tendency to convert to rutile in the thermal postannealings. In nitrogen, a fraction of the titanium tetrabutoxide precursor evaporated and formed ultrafine particles via the gas-to-particle conversion. At 500°C thermally stable anatase phase was formed in nitrogen. A specific surface area as high as 280 m 2 g −1 was observed for an as-prepared powder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.