Leaf reflectance and transmittance spectra are urgently needed in interpretation of remote sensing data and modeling energy budgets of vegetation. The measurement methods should be fast to operate and preferably portable to enable quick collection of spectral databases and in situ measurements. At the same time, the collected spectra must be comparable across measurement campaigns. We compared three different methods for acquiring leaf reflectance and transmittance spectra. These were a single integrating sphere (ASD RTS-3ZC), a small double integrating sphere (Ocean Optics SpectroClip-TR), and a leaf clip (PP Systems UNI501 Mini Leaf Clip). With all methods, an ASD FieldSpec 4 spectrometer was used to measure white paper and tree leaves. Single and double integrating spheres showed comparable within-method variability in the measurements. Variability with leaf clip was slightly higher. The systematic difference in mean reflectance spectra between single and double integrating spheres was only minor (average relative difference of 1%), whereas a large difference (14%) was observed in transmittance. Reflectance measured with leaf clip was on average 14% higher compared to single integrating sphere. The differences between methods influenced also spectral vegetation indices calculated from the spectra, particularly those that were designed to track small changes in spectra. Measurements with double integrating sphere were four, and with leaf clip six times as fast as with single integrating sphere, if slightly reduced signal level (integration time reduced from optimum) was allowed for the double integrating sphere. Thus, these methods are fast alternatives to a conventional single integrating sphere. However, because the differences between methods depended on the measured target and wavelength, care must be taken when comparing the leaf spectra acquired with different methods.
Physically-based methods in remote sensing provide benefits over statistical approaches in monitoring biophysical characteristics of vegetation. However, physically-based models still demand large computational resources and often require rather detailed informative priors on various aspects of vegetation and atmospheric status. Spectral invariants and photon recollision probability theories provide a solid theoretical framework for developing relatively simple models of forest canopy reflectance. Empirical validation of these theories is, however, scarce. Here we present results of a first empirical validation of a model based on photon recollision probability at the level of individual trees. Multiangular spectra of pine, spruce, and oak tree seedlings (height = 0.38–0.7 m) were measured using a goniometer, and tree hemispherical reflectance was derived from those measurements. We evaluated the agreement between modeled and measured tree reflectance. The model predicted the spectral signatures of the tree seedlings in the wavelength range between 400 and 2300 nm well, with wavelength-specific bias between −0.048 and 0.034 in reflectance units. In relative terms, the model errors were the smallest in the near-infrared (relative RMSE up to 4%, 7%, and 4% for pine, spruce, and oak seedlings, respectively) and the largest in the visible wavelength region (relative RMSE up to 34%, 20%, and 60%). The errors in the visible region could be partly attributed to wavelength-dependent directional scattering properties of the leaves. Including woody parts of tree seedlings in the model improved the results by reducing the relative RMSE by up to 10% depending on species and wavelength. Spectrally invariant model parameters, i.e. total and directional escape probabilities, depended on spherically averaged silhouette to total area ratio (STAR) of the tree seedlings. Overall, the modeled and measured tree reflectance mainly agreed within measurement uncertainties, but the results indicate that the assumption of isotropic scattering by the leaves can result in large errors in the visible wavelength region for some tree species. Our results help increasing the confidence when using photon recollision probability and spectral invariants -based models to interpret satellite images, but they also lead to an improved understanding of the assumptions and limitations of these theories.
Accurate mapping of the spatial distribution of understory species from spectral images requires ground reference data which represent the prevailing phenological stage at the time of image acquisition. We measured the spectral bidirectional reflectance factors (BRFs, 350â2500 nm) at varying view angles for lingonberry ( L.) and blueberry ( L.) throughout the growing season of 2017 using Finnish Geospatial Research Instituteâs FIGIFIGO field goniometer. Additionally, we measured spectra of leaves and berries of both species, and flowers of lingonberry. Both lingonberry and blueberry showed seasonality in visible and near-infrared spectral regions which was linked to occurrences of leaf growth, flowering, berrying, and leaf senescence. The seasonality of spectra differed between species due to different phenologies (evergreen vs. deciduous). Vegetation indices, normalized difference vegetation index (NDVI), moisture stress index (MSI), plant senescence reflectance index (PSRI), and red-edge inflection point (REIP2), showed characteristic seasonal trends. NDVI and PSRI were sensitive to the presence of flowers and berries of lingonberry, while with blueberry the effects were less evident. Off-nadir observations supported differentiating the dwarf shrub species from each other but showed little improvement for detection of flowers and berries. Lingonberry and blueberry can be identified by their spectral signatures if ground reference data are available over the entire growing season. The spectral data measured in this study are reposited in the publicly open SPECCHIO Spectral Information System.Vaccinium vitis-idaeaVaccinium myrtillus
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.