Background: Bovine tuberculosis (bTB) affects cattle and wildlife in South Africa with the African buffalo (Syncerus caffer) as the principal maintenance host. The presence of a wildlife maintenance host at the wildlife/livestock interface acting as spill-over host makes it much more challenging to control and eradicate bTB in cattle. Spoligotyping and mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) genotyping methods were performed to investigate the genetic diversity of Mycobacterium bovis (M. bovis) isolates from cattle and wildlife, their distribution and transmission at the wildlife/livestock interface in northern Kwa-Zulu Natal (KZN), South Africa.Results: SB0130 was identified as the dominant spoligotype pattern at this wildlife/livestock interface, while VNTR typing revealed a total of 29 VNTR profiles (strains) in the KZN province signifying high genetic variability. The detection of 5 VNTR profiles shared between cattle and buffalo suggests M. bovis transmission between species. MIRU-VNTR confirmed co-infection in one cow with three strains of M. bovis that differed at a single locus, with 2 being shared with buffalo, implying pathogen introduction from most probably unrelated wildlife sources.
Conclusion:Our findings highlight inter and intra species transmission of bTB at the wildlife/livestock interface and the need for the implementation of adequate bTB control measures to mitigate the spread of the pathogen responsible for economic losses and a public health threat.
A cross-sectional study was conducted to investigate the risk factors associated with zoonotic tuberculosis in humans and its transmission to people living at the wildlife–livestock–human interface. A questionnaire was administered to collect information on food consumption habits, food handling practices, and knowledge of zoonotic TB. Sputum samples were also collected from 150 individuals that belonged to households of cattle farmers with or without a bTB infected herd. In addition, 30 milk samples and 99 nasal swabs were randomly collected from cattle in bTB infected herds for isolation of Mycobacterium bovis (M. bovis). The sputum samples were screened for TB using the GeneXpert test and this was followed by mycobacterial culture and speciation using molecular techniques. No M. bovis was isolated from TB positive sputum samples and only one sample was confirmed as Mycobacterium tuberculosis (M. tuberculosis). M. bovis was isolated from 6.6% (n = 2/30) milk samples and 9% (n = 9/99) of nasal swabs. Ownership of a bTB infected herd and consumption of milk were recognized as highly significant risk factors associated with a history of TB in the household using multiple correspondence analysis (MCA) and logistic regression. The findings from this study have confirmed the potential for zoonotic TB transmission via both unpasteurized milk and aerosol thus, the role of M. bovis in human TB remains a concern for vulnerable communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.