Nano-scale power splitters based on Si hybrid plasmonic waveguides are designed by utilizing the multimode interference (MMI) effect as well as Y-branch structure. A three-dimensional finite-difference time-domain method is used for simulating the light propagation and optimizing the structural parameters. The designed 1 × 2 50:50 MMI power splitter has a nano-scale size of only 650 nm × 530 nm. The designed Y-branch power splitter is also very small, i.e., about 900 nm × 600 nm. The fabrication tolerance is also analyzed and it is shown that the tolerance of the waveguide width is much larger than±50 nm. The power splitter has a very broad band of over 500 nm. In order to achieve a variable power splitting ratio, a 2×2 two-mode interference coupler and an asymmetric Y-branch are used and the corresponding power splitting ratio can be tuned in the range of 97.1%:2.9%-1.7%:98.3% and 84%:16%-16%:84%, respectively. Finally a 1×4 power splitter with a device footprint of 1.9 μm × 2.6 μm is also presented using cascaded Y-branches.
We calculate the dispersion properties of waveguides composed of near-field-coupled arrays of metal-clad quantum dots (QDs). The high optical loss incurred by operating the metal shells close to resonance is mitigated by using optical gain in the QDs. A condition for achieving loss compensated operation is given based on realistic material parameters and neglecting inhomogeneous broadening.
Numerical simulations of a binary mixture of quantum dots exhibiting gain with silver nanorods are performed, showing the feasibility of lossless negative ε operation for realistic material structures and parameters.
We theoretically analyzed the lower bound of energy dissipation required for optical excitation transfer from smaller quantum dots to larger ones via optical near-field interactions. The coherent interaction between two quantum dots via optical near-fields results in unidirectional excitation transfer by an energy dissipation process occurring in the larger dot. We investigated the lower bound of this energy dissipation, or the intersublevel energy difference at the larger dot, when the excitation appearing in the larger dot originated from the excitation transfer via optical near-field interactions. We demonstrate that the energy dissipation could be as low as 25 μeV. Compared with the bit flip energy of an electrically wired device, this is about 10⁴ times more energy efficient. The achievable integration density of nanophotonic devices is also analyzed based on the energy dissipation and the error ratio while assuming a Yukawa-type potential for the optical near-field interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.