Emerging possibilities for creating and studying novel plasma regimes, e.g. relativistic plasmas and dense systems, in a controlled laboratory environment also require new modeling tools for such systems. This motivates theoretical studies of the kinetic theory governing the dynamics of plasmas for which both relativistic and quantum effects occur simultaneously. Here, we investigate relativistic corrections to the Pauli Hamiltonian in the context of a scalar kinetic theory for spin-1/2 quantum plasmas. In particular, we formulate a quantum kinetic theory for the collective motion of electrons that takes into account effects such as spin-orbit coupling and Zitterbewegung. We discuss the implications and possible applications of our findings. Contents
We developed nanoparticles with tailored magnetic properties for direct and sensitive detection of biomolecules in biological samples in a single step. Thermally blocked nanoparticles obtained by thermal hydrolysis, functionalized with specific ligands, are mixed with sample solutions, and the variation of the magnetic relaxation due to surface binding is used to detect the presence of biomolecules. The binding significantly increases the hydrodynamic volume of nanoparticles, thus changing their Brownian relaxation frequency which is measured by a specifically developed AC susceptometer. The system was tested for the presence of Brucella antibodies, a dangerous pathogen causing brucellosis with severe effects both on humans and animals, in serum samples from infected cows and the surface of the nanoparticles was functionalized with lipopolysaccharides (LPS) from Brucella abortus. The hydrodynamic volume of LPS-functionalized particles increased by 25-35% as a result of the binding of the antibodies, measured by changes in the susceptibility in an alternating magnetic field. The method has shown high sensitivity, with detection limit of 0.05 microg x mL(-1) of antibody in the biological samples without any pretreatment. This magnetic-based assay is very sensitive, cost-efficient, and versatile, giving a direct indication whether the animal is infected or not, making it suitable for point-of-care applications. The functionalization of tailored magnetic nanoparticles can be modified to suit numerous homogeneous assays for a wide range of applications.
A hydrophilic liquid, such as water, forms hydrogen bonds with a hydrophilic substrate. The strength and locality of the hydrogen bonding interactions prohibit slip of the liquid over the substrate. The question then arises how the contact line can advance during wetting. Using large-scale molecular dynamics simulations we show that the contact line advances by single molecules moving ahead of the contact line through two distinct processes: either moving over or displacing other liquid molecules. In both processes friction occurs at the molecular scale. We measure the energy dissipation at the contact line and show that it is of the same magnitude as the dissipation in the bulk of a droplet. The friction increases significantly as the contact angle decreases, which suggests suggests thermal activation plays a role. We provide a simple model that is consistent with the observations. arXiv:1710.08790v2 [physics.flu-dyn]
Lake‐dwelling fish that form species pairs/flocks characterized by body size divergence are important model systems for speciation research. Although several sources of divergent selection have been identified in these systems, their importance for driving the speciation process remains elusive. A major problem is that in retrospect, we cannot distinguish selection pressures that initiated divergence from those acting later in the process. To address this issue, we studied the initial stages of speciation in European whitefish (Coregonus lavaretus) using data from 358 populations of varying age (26–10,000 years). We find that whitefish speciation is driven by a large‐growing predator, the northern pike (Esox lucius). Pike initiates divergence by causing a largely plastic differentiation into benthic giants and pelagic dwarfs: ecotypes that will subsequently develop partial reproductive isolation and heritable differences in gill raker number. Using an eco‐evolutionary model, we demonstrate how pike's habitat specificity and large gape size are critical for imposing a between‐habitat trade‐off, causing prey to mature in a safer place or at a safer size. Thereby, we propose a novel mechanism for how predators may cause dwarf/giant speciation in lake‐dwelling fish species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.