We calculate the light hadron spectrum in full QCD using two plus one flavor Asqtad sea quarks and domain wall valence quarks. Meson and baryon masses are calculated on a lattice of spatial size L ≈ 2.5 fm, and a lattice spacing of a ≈ 0.124 fm, for pion masses as light as mπ ≈ 300 MeV, and compared with the results by the MILC collaboration with Asqtad valence quarks at the same lattice spacing. Two-and three-flavor chiral extrapolations of the baryon masses are performed using both continuum and mixed-action heavy baryon chiral perturbation theory. Both the threeflavor and two-flavor functional forms describe our lattice results, although the low-energy constants from the next-to-leading order SU (3) fits are inconsistent with their phenomenological values. Nextto-next-to-leading order SU (2) continuum formulae provide a good fit to the data and yield and extrapolated nucleon mass consistent with experiment, but the convergence pattern indicates that even our lightest pion mass may be at the upper end of the chiral regime. Surprisingly, our nucleon masses are essentially lineaer in mπ over our full range of pion masses, and we show this feature is common to all recent dynamical calculations of the nucleon mass. The origin of this linearity is not presently understood, and lighter pion masses and increased control of systematic errors will be needed to resolve this puzzling behavior.
We show how generalized quark distributions in the nucleon describe the density of polarized quarks in the impact parameter plane, both for longitudinal and transverse polarization of the quark and the nucleon. This density representation entails positivity bounds including chiral-odd distributions, which tighten the known bounds in the chiral-even sector. Using the quark equations of motion, we derive relations between the moments of chiral-odd generalized parton distributions of twist two and twist three. We exhibit the analogy between polarized quark distributions in impact parameter space and transverse momentum dependent distribution functions.
We present a first calculation of transverse momentum dependent nucleon observables in dynamical lattice QCD employing non-local operators with staple-shaped, "process-dependent" Wilson lines. The use of staple-shaped Wilson lines allows us to link lattice simulations to TMD effects determined from experiment, and in particular to access non-universal, naively time-reversal odd TMD observables. We present and discuss results for the generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS and DY cases. The effect of staple-shaped Wilson lines on T-even observables is studied for the generalized tensor charge and a generalized transverse shift related to the worm gear function g1T . We emphasize the dependence of these observables on the staple extent and the Collins-Soper evolution parameter. Our numerical calculations use an n f = 2+1 mixed action scheme with domain wall valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.
We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N f = 2 + 1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm) 3 , for a lattice spacing of 0.124 fm. We use perturbative renormalization at one-loop level with an improvement based on the non-perturbative renormalization factor for the axial vector current, and only connected diagrams are included in the isosinglet channel.
We present high statistics results for the structure of the nucleon from a mixed-action calculation using 2+1 flavors of asqtad sea and domain wall valence fermions. We perform extrapolations of our data based on different chiral effective field theory schemes and compare our results with available information from phenomenology. We discuss vector and axial form factors of the nucleon, moments of generalized parton distributions, including moments of forward parton distributions, and implications for the decomposition of the nucleon spin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.