The design of automotive systems requires the joint design of hardware, software and micro-mechanical components. In traditional design approaches the different parts are designed by separate groups and the integration of the overall system is made at the final stage. This scheme may induce extra delays and costs because of interfacing problems. The paper presents a new automotive system design approach that offers many advantages including efficient design flow and shorter time to market. The key idea of our approach is to allow for early validation of the overall system through co-simulation. The design starts with a high level specification of each part. In our approach, software is described in C, hardware is described in VHDL and mechanical parts are described in MATLAB. A C-VHDL-MATLAB co-simulation is then used for functional validation of the initial specification. During the design process, the hardware and software parts may be refined using specific techniques and tools. The refinement steps are also validated through co-simulation. In this approach we use two kinds of co-simulation: untimed co-simulation is used for functional validation and timed co-simulation for real time validation. The paper describes the design approach and its successful application to an example from the automotive industry
Multilanguage solutions are required for the design of heterogeneous systems where different parts belong to different application classes e.g. control/data or continuous/discrete. The main problem that needs to be solved when dealing with multilanguage design is the refinement of communication between heterogeneous subsystems. This paper discusses the basic concepts of multilanguage design and introduces MUSIC a Multilanguage design approach. The paper also shows the application of this approach in the case of a mechatronic system.
Nowadays the design of complex systems requires the cooperation of several teams belonging to different cultures and using different languages. It is necessary to dispose of new design and verification m£thot/s to handle multilanguage approaches. This paper presents a multi language co-simulation tool that allows cosimulation of multilanguage specifications for complex systems. The main idea of our approach is to allow validation of the functional completeness of the system at a behavioral level. Mel starts with a configuration file that describes the interconnection between modules written in different languages. It generates automatically a software co-simulation bus and the interfaces required to connect the different simulators in a distributed way. The proposed tool is used to assist the design (If an adaptive speed control system that was described in three different languages
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.