No abstract
In this paper, we propose a method to construct hedge algebra based type-2 fuzzy logic systems (HA-T2FLS). In these fuzzy logic systems, the footprints of uncertainty (FOU) of type-2 fuzzy sets are optimized by genetic algorithm and the dispersion of data. The key ingredient of our system is the concept of centroid of hedge algebra based type-2 fuzzy sets. It is used in the type-reducing of the HA-T2FLS, and transforming interval type-2 fuzzy sets to hedge algebra based type-2 fuzzy sets. As an application, we show how hedge algebra based type-2 fuzzy logic systems can be used to predict survival time of myeloma patients. The results show that hedge algebra based type-2 fuzzy logic systems are more accurate than type-1 and interval type-2 fuzzy logic systems in this class of problems. I.2009 International Conference on Knowledge and Systems Engineering 978-0-7695-3846-4/09 $26.00
The paper proposes a method to construct type-2 Takagi-Sugeno-Kang (TSK) fuzzy system for electrocardiogram (ECG) arrhythmic classification. The classifier is applied to distinguish normal sinus rhythm (NSR), ventricular fibrillation (VF) and ventricular tachycardia (VT). Two features of ECG signals, the average period and the pulse width, are inputs to the fuzzy classifier. The rule base in the fuzzy system is constructed from training data. We also present the method using fuzzy C-mean clustering algorithm and the back-propagation technique to determine parameters of type-2 TSK fuzzy classifier. The generalized bell primary membership function is used to examine the performance of the classifier with different shapes of membership functions. The results of experiments with data from the MIT-BIH Malignant Ventricular Arrhythmia Database show the classification accuracy of 100% for NSR signals, 93.3% for VF signals, and 92% of VT signals.
nghệ thông tin, trường Đại học Vinh 2 Viện Công nghệ thông tin và Truyền thông, trường Đại học Bách khoa Hà Nội Tóm tắt. Bài báo đề xuất một phương pháp xây dựng một hệ lôgic mờ loại hai đại số gia tử (HaT2-FLS). Quy trình này gồm hai pha, trước tiên, thiết kế một hệ lôgic mờ loại 1 (T1-FLS) từ dữ liệu bằng cách kết hợp thuật toán Fuzzy C-Means (FCM) với giải thuật di truyền (GA). Sau đó, HaT2-FLS được xây dựng từ T1-FLS vừa thiết kế. Cơ sở luật trong HaT2-FLS sử dụng cùng số luật, số tập mờ như cơ sở luật trong T1-FLS, điểm khác biệt là ở chỗ mỗi luật trong HaT2-FLS có phần tiền đề và phần kết luận đều là các HaT2FSs. Trong pha hai, các tham số của HaT2FSs được tối ưu bằng GA. Thử nghiệm phương pháp đề nghị với bài toán dự báo thời gian sống của bệnh nhân viêm tủy cho kết quả tin cậy.
In this paper, we propose a new approach to fuzzy clustering in order to handle the uncertainties in pattern recognition problems on the basis of conventional fuzzy C-means algorithm (FCM). In our approach, we define the concept of linguistic cluster center by employing the semantic structure of hedge algebra. This kind of cluster center is constructed to give the appropriate weights for each pattern of the dataset in our clustering algorithm. The parameters of hedge algbra are then optimized in the training process to obtain the suitable parameters for the dataset. We also incorporate the k-means algorithm to get better results in comparing to conventional FCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.