Exploring the configurational space of specific origami patterns (e.g. Miura-Ori, Eggbox) has led to major advances in science and technology. To augment the origami design space, we present a pattern, named Morph, that combines the features of its parent patterns. We introduce a fourvertex origami cell that morphs continuously between a Miura mode and an Eggbox mode, forming a homotopy class of configurations. This is achieved by changing Mountain/Valley assignment of one of the creases, leading to a smooth switch through a wide range of negative and positive Poisson's ratios. We present elegant analytical expressions of Poisson's ratios for both in-plane stretching and out-of-plane bending, and find that they are equal in magnitude and opposite in sign. Further, we show that by combining compatible unit cells in each of the aforementioned modes through kinematic bifurcation, we can create hybrid origami patterns that display unique properties such as topological mode-locking (irreversible morphing under stretch by synchronized engagement of aligned panels in the Miura mode) and tunable switching of Poisson's ratio.
We present the Clenshaw-Curtis Spectral Quadrature (SQ) method for real-space O(N) Density Functional Theory (DFT) calculations. In this approach, all quantities of interest are expressed as bilinear forms or sums over bilinear forms, which are then approximated by spatially localized Clenshaw-Curtis quadrature rules. This technique is identically applicable to both insulating and metallic systems, and in conjunction with local reformulation of the electrostatics, enables the O(N) evaluation of the electronic density, energy, and atomic forces. The SQ approach also permits infinite-cell calculations without recourse to Brillouin zone integration or large supercells. We employ a finite difference representation in order to exploit the locality of electronic interactions in real space, enable systematic convergence, and facilitate large-scale parallel implementation. In particular, we derive expressions for the electronic density, total energy, and atomic forces that can be evaluated in O(N) operations. We demonstrate the systematic convergence of energies and forces with respect to quadrature order as well as truncation radius to the exact diagonalization result. In addition, we show convergence with respect to mesh size to established O(N 3) planewave results. Finally, we establish the efficiency of the proposed approach for high temperature calculations and discuss its particular suitability for large-scale parallel computation.
We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson-Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-ups that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. Overall, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.
a b s t r a c tWe present a variant of the restarted Pulay's Direct Inversion in the Iterative Subspace (DIIS) method for efficiently and robustly accelerating the convergence of fixed-point iterations. Specifically, we propose a simple modification of DIIS without any additional parameters, which we refer to as the r-Pulay method. We demonstrate the efficacy of r-Pulay in the context of the Jacobi iteration for solving large linear systems of equations, as well as in the Self Consistent Field (SCF) approach for Density Functional Theory (DFT) calculations. Overall, we find r-Pulay to be an attractive version of the restarted DIIS method.
We present SQDFT: a large-scale parallel implementation of the Spectral Quadrature (SQ) method for O(N) Kohn-Sham Density Functional Theory (DFT) calculations at high temperature. Specifically, we develop an efficient and scalable finite-difference implementation of the infinite-cell Clenshaw-Curtis SQ approach, in which results for the infinite crystal are obtained by expressing quantities of interest as bilinear forms or sums of bilinear forms, that are then approximated by spatially localized Clenshaw-Curtis quadrature rules. We demonstrate the accuracy of SQDFT by showing systematic convergence of energies and atomic forces with respect to SQ parameters to reference diagonalization results, and convergence with discretization to established planewave results, for both metallic and insulating systems. We further demonstrate that SQDFT achieves excellent strong and weak parallel scaling on computer systems consisting of tens of thousands of processors, with near perfect O(N) scaling with system size and wall times as low as a few seconds per self-consistent field iteration. Finally, we verify the accuracy of SQDFT in large-scale quantum molecular dynamics simulations of aluminum at high temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.