The search for clean, low-cost, and renewable energy sources is one important challenge of modern industrial societies. [1] Hydrogen generated by photochemistry has been identified as a promising energy carrier with high energy density and zero CO 2 emission while being environmentally clean. [2,3] To set up a light-driven and hydrogen based economy an exploration of new materials for eco-friendly, economically viable, stable, and efficient photocatalysts is needed. [4] Noble metals like platinum, iridium, and ruthenium are efficient catalysts for the electrolysis of water, but their scarcity and high-costs limit large-scale technological use. [5] The development of cheap and active catalysts with long-term stability for the hydrogen or oxygen evolution reaction in standard electrolytes is an important goal. A general method to carry out the fluorination of metal oxides with poly(tetrafluoroethylene) (PTFE, Teflon) waste by spark plasma sintering (SPS) on a minute scale with Teflon is reported. The potential of this new approach is highlighted by the following results. i) The tantalum oxyfluorides Ta 3 O 7 F and TaO 2 F are obtained from plastic scrap without using toxic or caustic chemicals for fluorination. ii) Short reaction times (minutes rather than days) reduce the process time the energy costs by almost three orders of magnitude. iii) The oxyfluorides Ta 3 O 7 F and TaO 2 F are produced in gram amounts of nanoparticles. Their synthesis can be upscaled to the kg range with industrial sintering equipment. iv) SPS processing changes the catalytic properties: while conventionally prepared Ta 3 O 7 F and TaO 2 F show little catalytic activity, SPS-prepared Ta 3 O 7 F and TaO 2 F exhibit high activity for photocatalytic oxygen evolution, reaching photoconversion efficiencies up to 24.7% and applied bias to photoconversion values of 0.86%. This study shows that the materials properties are dictated by the processing which poses new challenges to understand and predict the underlying factors.
A protein-free formation of bone-like apatite from amorphous precursors through ball-milling is reported. Mg 2+ ions are crucial to achieve full amorphization of CaCO 3. Mg 2+ incorporation generates defects which strongly retard a recrystallization of ball-milled Mg-doped amorphous calcium carbonate (BM-aMCC), which promotes the growth of osteoblastic and endothelial cells in simulated body fluid and has no effect on endothelial cell gene expression. Ex situ snapshots of the processes revealed the reaction mechanisms. For low Mg contents (<30%) a two phase system consisting of Mg-doped amorphous calcium carbonate (ACC) and calcite "impurities" was formed. For high (>40%) Mg 2+ contents, BM-aMCC follows a different crystallization path via magnesian calcite and monohydrocalcite to aragonite. While pure ACC crystallizes rapidly to calcite in aqueous media, Mg-doped ACC forms in the presence of phosphate ions bone-like hydroxycarbonate apatite (dahllite), a carbonate apatite with carbonate substitution in both type A (OH −) and type B (PO 4 3−) sites, which grows on calcite "impurities" via heterogeneous nucleation. This process produces an endotoxin-free material and makes BM-aMCC an excellent "ion storage buffer" that promotes cell growth by stimulating cell viability and metabolism with promising applications in the treatment of bone defects and bone degenerative diseases.
Amorphous calcium carbonate (ACC) is an important precursor in the biomineralization of crystalline CaCO3. In nature it serves as a storage material or as permanent structural element, whose lifetime is regulated by an organic matrix. The relevance of ACC in materials science is primarily related to our understanding of CaCO3 crystallization pathways and CaCO3/(bio)polymer nanocomposites. ACC can be synthesized by liquid-liquid phase separation, and it is typically stabilized with macromolecules. We have prepared ACC by milling calcite in a planetary ball mill. Phosphate "impurities" were added in the form of monetite (CaHPO4) to substitute the carbonate anions, thereby stabilizing ACC by substitutional disorder. The phosphate anions do not simply replace the carbonate anions. They undergo shear-driven acid/base and condensation reactions, where stoichiometric (50%) phosphate contents are required for the amorphization to be complete. The phosphate anions generate a strained network that hinders ACC recrystallization kinetically. The amorphization reaction and the structure of BM-ACC were studied by quantitative Fourier transform infrared spectroscopy and solid state 31 P, 13 C, and 1 H magic angle spinning nuclear magnetic resonance spectroscopy, which are highly sensitive to symmetry changes of the local environment. In the first-and fast-reaction step, the CO3 2
Concrete is the most prevalent manufactured material that has shaped the built environment, but the high-temperature production of cement, the main component of concrete, has a massive carbon footprint. It is shown that CO 2 emissions during clinker production of cement can be circumvented by a metathesis reaction at room temperature in ball-mills, where the cement clinker is replaced by non-calcined limestone and alkali-activated binders/ geopolymers. An amorphous intermediate (aNaSiCC) containing a random mixture of the ionic constituents in "molecular" dispersion is formed by mechanochemical activation of CaCO 3 and Na 2 SiO 3 . This allows molecular transport during crystallization and low activated reactions, as precipitation of solids from liquids (nucleation limited and kinetically controlled) and solid-state transformations (diffusion-limited and thermodynamically controlled) have equal weight. Several steps of the hydration reaction could be resolved. Activating the amorphous aNaSiCC precursor with NaOH leads to a CSH-like phase with a C/S ratio of ≈1 containing some sodium. The carbonate components pass through a multistep crystallization from aNaSiCC via pirssonite and gaylussite to monohydrocalcite. The findings help unravel the interplay between thermodynamics and kinetics in complex reactions of alkali-activated binders and for CaCO 3 crystallization in industrial and geochemical settings, where dissolved silicate is always involved.
Marine organisms combat bacterial colonization by biohalogenation of signaling compounds that interfere with bacterial communication. These reactions are catalyzed by haloperoxidase enzymes, whose activity can be emulated by nanoceria using...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.