1 Increases in intracellular calcium ([Ca2+]i) were measured in chinese hamster cultured ovary cells (clone, CHO-Ki), by use of the fluorescent, calcium-sensitive dye, fura-2.2 Addition of both ATP and UTP elicited rapid increases in [Ca2+]i due to mobilization from intracellular stores and calcium entry across the plasma membrane. 3 Omission of calcium from the extracellular medium and pre-incubation with the inorganic calcium channel blocker, nickel (Ni2l) prevented the calcium entry components of the responses. 4 Investigation of the concentration-response relationships of various analogues of ATP suggests the presence of a purinoceptor which cannot be characterized as P2X or P2Y. In addition, there appears to be a sub-population of P2y-purinoceptors which do not cross-react with the 'nucleotide' receptor population.5 Cross-desensitization and additivity experiments suggest that both ATP and UTP activate the same receptor.6 Pre-incubation with the tumour-promoting agent, P-phorbol-12,13 dibutyrate (PDBu), caused a reduction in the increases in [Ca2+]i, suggesting a role for protein kinase C in feedback inhibition of purinoceptor responses in this cell line.7 In summary, we present evidence for the existence of an endogenous P2u-purinoceptor (or 'nucleotide receptor') which is linked to increases in [Ca2+], in CHO-KI cells.
Drugs acting at cannabinoid type 1 receptors (CB1) have modulatory effects on glutamate and GABA neurotransmission in basal ganglia; thus, they potentially affect motor behavior in the parkinsonian setting. Preclinical trials with diverse cannabinoid agents have shown varied results, and the precise effects of blocking cannabinoid CB1 receptors remain uncertain. We tested behavioral effects of the selective antagonist 1-[7-(2-chlorophenyl)-8-(4-chlorophenyl)-2-methylpyrazolo[1,5-a]-[1,3,5]triazin-4-yl]-3-ethylaminoazetidine-3-carboxylic acid amide benzenesulfonate (CE) as monotherapy and in combination with L-DOPA in treatment-naive and L-DOPA-primed 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated rhesus monkeys with moderate and severe parkinsonism. Motor disability and L-DOPA-induced dyskinesias were scored with a standardized scale after subcutaneous drug administration, and plasma levels of L-DOPA were determined by highperformance liquid chromatography/electrochemical detection. CE doses ranged from 0.03 to 1 mg/kg, and L-DOPA methyl ester doses were selected as optimal and suboptimal doses (maximal and 50% of maximal responses, respectively). CE had no intrinsic effects on motor behavior regardless of the degree of parkinsonism (moderate or severe groups) or previous drug exposure ("de novo" or after L-DOPA priming). Initial CE administration did not affect development of L-DOPA antiparkinsonian responses. In coadministration trials, CE, in a dose-dependent manner, increased responses to L-DOPA (suboptimal doses). These effects were seen in both moderate and severely parkinsonian monkeys as a 30% increase of, predominantly, response duration with no effects on L-DOPA pharmacokinetics. CE did not modify levodopa-induced dyskinesias. These results suggest that selective cannabinoid CB1 antagonists may enhance the antiparkinsonian action of dopaminomimetics and possibly facilitate the use of lower doses, thereby reducing side effects.Parkinson's disease (PD) is characterized principally by progressive neurodegeneration of the nigrostriatal dopamine system and its accompanying motor dysfunction: tremor, rigidity, and bradykinesia. Dopamine replacement with the dopamine precursor L-DOPA improves motor symptoms, although long-term therapy causes disabling side effects, such as varied motor complications (response fluctuations and dyskinesias) (Nutt, 2000;Obeso et al., 2000). Because of these shortcomings, therapies that act as either adjuncts or alternatives to L-DOPA by modulating its effects and reducing adverse reactions may help in restoring normal function in the late-stage disease. Putative bases for developing new therapies lie in the interaction of dopamine with other neurotransmitter systems in basal ganglia. In fact, pathogenic mechanisms of L-DOPA-induced motor complications involve the glutamate system as the major transmitter driving the activity of striatal neurons (Chase and Oh, 2000). Other
The present study demonstrates that the regulator of G-protein-signaling protein type 4 (RGS4) is differentially regulated in the locus coeruleus (LC) and the paraventricular nucleus (PVN) of the hypothalamus by chronic stress and glucocorticoid treatments. Acute or chronic administration of corticosterone to adult rats decreased RGS4 mRNA levels in the PVN but increased these levels in the LC. Similarly, chronic unpredictable stress decreased RGS4 mRNA levels in the PVN but had a strong trend to increase these levels in the LC. Chronic stress also decreased RGS4 mRNA levels in the pituitary. The molecular mechanisms of RGS4 mRNA regulation were further investigated in vitro in the LC-like CATH.a cell line and the neuroendocrine AtT20 cell line using the synthetic corticosterone analog dexamethasone. Consistent with the findings in vivo, dexamethasone treatment caused a dose- and time-dependent decrease in RGS4 mRNA levels in AtT20 cells but a dose- and time-dependent increase in CATH.a cells. RGS4 mRNA regulation seen in these two cell lines seems to be attributable, at least in part, to opposite changes in mRNA stability. The differential regulation of RGS4 expression in the LC and in key relays of the hypothalamic-pituitary-adrenal axis could contribute to the brain's region-specific and long-term adaptations to stress.
Previous studies indicate that corticotropinreleasing factor (CRF) contributes to the anxiety-like and aversive states associated with drug-induced withdrawal. The present study extends this work by analyzing the CRF receptor subtype involved in withdrawal responses. First, the influence of a selective CRF receptor-1 (CRF-R1) antagonist, CP-154,526, on opiate withdrawal behavior was examined. Pretreatment with the CRF-R1 antagonist significantly attenuated several behavioral signs of naltrexone-induced morphine withdrawal, including writhing, chewing, weight loss, lacrimation, salivation, and irritability, measured during the first hour of withdrawal. Next the expression of CRF-R1 was determined as a second measure of the involvement of this receptor in opiate withdrawal. Naltrexone-induced morphine withdrawal resulted in down-regulation of CRF-R1 mRNA in several brain regions, including the frontal cortex, parietal cortex, striatum, nucleus accumbens, and amygdala, but not in the hypothalamus or periaqueductal gray. Expression of CRF-R2, the other major CRF receptor subtype, was not down-regulated significantly by withdrawal in any of the regions examined, although morphine alone significantly increased levels of this receptor subtype. Taken together, the behavioral and receptor regulation findings indicate that CRF-R1 is the primary mediator of the actions of the CRF system on opiate withdrawal, although it is possible that CRF-R2 contributes to the response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.