Several azaxanthone and azathioxanthone sensitising chromophores have been incorporated into macrocyclic ligands and form well-defined Eu and Tb complexes in polar media. Excitation of the heterocyclic chromophore in the range 330 to 382 nm leads to modest amounts of aromatic fluorescence and relatively efficient metal-based luminescence, with absolute metal-based quantum yields of up to 24% in aqueous media.
The excited states of Tb and Eu complexes of a common macrocyclic ligand are quenched preferentially by electron transfer from the urate anion, allowing the creation of a new assay to measure uric acid in biological fluids.
The crystal structures of the hydrated salts of [Gd.DOTAM]3+ and its more hydrophobic derivative [Gd.]3+, bearing 4 alpha-phenylethyl groups, (both Gd and Yb salts) are reported and compared. The nature of the anion determines the degree of ordering in the lattice and the extent of hydration. These effects are correlated with the results of 17O and 1H NMR measurements of water exchange dynamics in solution. With [Gd.DOTAM]3+, structural ordering or the extent of hydration in the hydrated lattice follows the sequence Cl->Br->I- and this order also defines the water exchange rate in solution: 7.3, 19.5, 33.3x10(4) s-1 (298 K), respectively. For [Gd.]3+ salts, the measured relaxivity is determined purely by the outer sphere term and the water exchange rate at 298 K is very similar (typically 1x10(4) s-1) for chloride, bromide, iodide, acetate, triflate and nitrate salts, notwithstanding the different nature and extent of hydration found in the crystalline lattice.
Dynamic quenching of the metal-based excited state of Eu(III) and Tb(III) complexes of sixteen different macrocyclic ligands has been studied. Quenching by urate, ascorbate and selected catechols is most effective for Tb(III) systems, and involves intermediate formation of an excited state complex (exciplex) between the electron-poor heterocyclic sensitising moiety incorporated into the ligand (tetraazatriphenylene, azaxanthone or a pyrazoyl-azaxanthone) and the electron-rich reductant. The process is sensitive to steric inhibition created by the local ligand environment; quenching is reduced as temperature increases as exciplex formation is entropically disfavoured. In contrast, iodide quenches each complex studied according to a classical collisional encounter model; increasing temperature enhances the rate of quenching, and the process is more sensitive to local electrostatic fields generated by ligand substitution, conforming to a traditional Stern-Volmer kinetic model. Quenching may be inhibited by protein association, allowing the identification of candidates for use as optical imaging probes in cellulo.
The dithiosalicylidenediamine Ni II complexes [Ni(L)] (R=tBu, R'=CH2C(CH3)2CH2 1, R'=C6H4 2; R=H, R'=CH2C(CH3)2CH2 3, R'=C6H4 4) have been prepared by transmetallation of the tetrahedral complexes [Zn(L)] (R=tBu, R'=CH2C(CH3)2CH2 7, R'=C6H4 8; R=H, R'=CH2C(CH3)2CH2 9, R'=C6H4 10) formed by condensation of 2,4-di-R-thiosalicylaldehyde with diamines H2N-R'-NH2 in the presence of Zn II salts. The diamagnetic mononuclear complexes [Ni(L)] show a distorted square-planar N2S2 coordination environment and have been characterized by 1H- and 13C NMR and UV/Vis spectroscopies and by single-crystal X-ray crystallography. Cyclic voltammetry and coulombic measurements have established that complexes 1 and 2, incorporating tBu functionalities on the thiophenolate ligands, undergo reversible one-electron oxidation processes, whereas the analogous redox processes for complexes 3 and 4 are not reversible. The one-electron oxidized species, 1+ and 2+, can be generated quantitatively either electrochemically or chemically with 70 % HClO4. EPR and UV/Vis spectroscopic studies and supporting DFT calculations suggest that the SOMOs of 1+ and 2+ possess thiyl radical character, whereas those of 1(py)2 + and 2(py)2 + possess formal Ni III centers. Species 2+ dimerizes at low temperature, and an X-ray crystallographic determination of the dimer [(2)2](ClO4)2.2 CH2Cl2 confirms that this dimerization involves the formation of a S-S bond (S...S=2.202(5) A).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.