We have previously shown that diabetes significantly enhances apoptosis of osteoblastic cells in vivo and that the enhanced apoptosis contributes to diabetes impaired new bone formation. A potential mechanism is enhanced apoptosis stimulated by advanced glycation endproducts (AGEs). To investigate this further, an advanced glycation product, carboxymethyl lysine modified collagen (CML-collagen) was injected in vivo and stimulated a 5 fold increase in calvarial periosteal cell apoptosis compared to unmodified collagen. It also induced apoptosis in primary cultures of human or neonatal rat osteoblastic cells or MC-3T3-E1 cells in vitro. Moreover, the apoptotic effect was largely mediated through RAGE receptor. CML-collagen increased p38 and JNK activity 3.2 and 4.4 fold, respectively. Inhibition of p38 and JNK reduced CML-collagen stimulated apoptosis by 45% and 59% and by 90% when used together (P<0.05). The predominant apoptotic pathway induced by CML-collagen involved caspase-8 activation of caspase-3 and was independent of NF-κB activation. When osteoblastic cells were exposed to a long-term low dose incubation with CMLcollagen there was a higher degree of apoptosis compared to short term incubation. In more differentiated osteoblastic cultures apoptosis was enhanced even further. These results indicate that advanced glycation endproducts, which accumulate in diabetic and aged individuals may promote apoptosis of osteoblastic cells and contribute to deficient bone formation.
The effect of type 1 diabetes on bone healing and bone formation in standardized craniotomy defects created in BALB/cByJ mice was determined. The hypothesis that advanced glycation end products (AGEs) contribute to diminished bone healing in diabetes was evaluated by assessing for the presence of the receptor for advanced glycation end products (RAGE) by immunohistochemistry in healing craniotomy defects in diabetic animals. The effect of local application of a known RAGE protein ligand, N ⑀ -(carboxymethyl)lysine (CML)؊mouse serum albumin (MSA), on craniotomy defect healing in normal animals was then assessed and compared to the effects of control MSA. Finally, evidence in support of the expression of RAGE mRNA and protein in osteoblastic cells was obtained. The results indicated that craniotomy defects in diabetic animals healed ϳ40% of the degree to which they healed in nondiabetic animals (P < 0.05). RAGE was expressed at higher levels in healing bone tissues in diabetic compared to control animals. Further studies in nondiabetic animals indicated that bone healing was reduced by 63 and 42% in lesions treated with 900 and 90 g CML-MSA, respectively, compared to in animals treated with MSA alone (P < 0.05). Evidence for the expression of RAGE was obtained in mouse and rat osteoblastic cultures. These results support the contribution of AGEs to diminished bone healing in type 1 diabetes, possibly mediated by RAGE. Diabetes
Lysyl oxidase catalyzes the oxidation of peptidyl lysine to alpha-aminoadipic-delta-semialdehyde, the precursor to the covalent crosslinkages that stabilize fibers of elastin and collagen. This enzyme contains both copper and a carbonyl cofactor consistent with an o-quinone. The proposed mechanism of action is derived from available kinetic and chemical data and also can account for mechanism-based inhibition of the enzyme by specific monoamines and diamines. Recent evidence for biosynthetic precursors and for the regulation of lysyl oxidase in fibrotic and malignant diseases is discussed.
Lysyl oxidase catalyzes the final enzymatic step required for collagen and elastin cross-linking in extracellular matrix biosynthesis. Pro-lysyl oxidase is processed by procollagen C-proteinase activity, which also removes the C-propeptides of procollagens I-III. The Bmp1 gene encodes two procollagen C-proteinases: bone morphogenetic protein 1 (BMP-1) and mammalian Tolloid (mTLD). Mammalian Tolloid-like (mTLL)-1 and -2 are two genetically distinct BMP-1-related proteinases, and mTLL-1 has been shown to have procollagen C-proteinase activity. The present study is the first to directly compare pro-lysyl oxidase processing by these four related proteinases. In vitro assays with purified recombinant enzymes show that all four proteinases productively cleave pro-lysyl oxidase at the correct physiological site but that BMP-1 is 3-, 15-, and 20-fold more efficient than mTLL-1, mTLL-2, and mTLD, respectively. To more directly assess the roles of BMP-1 and mTLL-1 in lysyl oxidase activation by connective tissue cells, fibroblasts cultured from Bmp1-null, Tll1-null, and Bmp1/Tll1 double null mouse embryos, thus lacking BMP-1/mTLD, mTLL-1, or all three enzymes, respectively, were assayed for lysyl oxidase enzyme activity and for accumulation of pro-lysyl oxidase and mature ϳ30-kDa lysyl oxidase. Wild type cells or cells singly null for Bmp1 or Tll1 all produced both pro-lysyl oxidase and processed lysyl oxidase at similar levels, indicating apparently normal levels of processing, consistent with enzyme activity data. In contrast, double null Bmp1/Tll1 cells produced predominantly unprocessed 50-kDa prolysyl oxidase and had lysyl oxidase enzyme activity diminished by 70% compared with wild type, Bmp1-null, and Tll1-null cells. Thus, the combination of BMP-1/ mTLD and mTLL-1 is shown to be responsible for the majority of processing leading to activation of lysyl oxidase by murine embryonic fibroblasts, whereas in vitro studies identify pro-lysyl oxidase as the first known substrate for mTLL-2.
Studies have shown that systemic PTH treatment enhanced the rate of bone repair in rodent models. However, the mechanisms through which PTH affects bone repair have not been elucidated. In these studies we show that PTH primarily enhanced the earliest stages of endochondral bone repair by increasing chondrocyte recruitment and rate of differentiation. In coordination with these cellular events, we observed an increased level of canonical Wnt-signaling in PTH-treated bones at multiple time-points across the timecourse of fracture repair, supporting the conclusion that PTH responses are at least in part mediated through Wnt signaling.Introduction: Since FDA approval of PTH ; Forteo] as a treatment for osteoporosis, there has been interest in its use in other musculoskeletal conditions. Fracture repair is one area in which PTH may have a significant clinical impact. Multiple animal studies have shown that systemic PTH treatment of healing fractures increased both callus volume and return of mechanical competence in models of fracture healing. Whereas the potential for PTH has been established, the mechanism(s) by which PTH produces these effects remain elusive. Materials and Methods: Closed femoral fractures were generated in 8-wk-old male C57Bl/6 mice followed by daily systemic injections of either saline (control) or 30 g/kg PTH(1-34) for 14 days after fracture. Bones were harvested at days 2, 3, 5, 7, 10, 14, 21, and 28 after fracture and analyzed at the tissue level by radiography and histomorphometry and at the molecular and biochemical levels level by RNase protection assay (RPA), real-time PCR, and Western blot analysis. Results: Quantitative CT analysis showed that PTH treatment induced a larger callus cross-sectional area, length, and total volume compared with controls. Molecular analysis of the expression of extracellular matrix genes associated with chondrogenesis and osteogenesis showed that PTH treated fractures displayed a 3-fold greater increase in chondrogenesis relative to osteogenesis over the course of the repair process. In addition, chondrocyte hypertrophy occurred earlier in the PTH-treated callus tissues. Analysis of the expression of potential mediators of PTH actions showed that PTH treatment significantly induced the expression of Wnts 4, 5a, 5b, and 10b and increased levels of unphosphorylated, nuclear localized -catenin protein, a central feature of canonical Wnt signaling. Conclusions: These results showed that the PTH-mediated enhancement of fracture repair is primarily associated with an amplification of chondrocyte recruitment and maturation in the early fracture callus. Associated with these cellular effects, we observed an increase in canonical Wnt signaling supporting the conclusion that PTH effects on bone repair are mediated at least in part through the activation of Wnt-signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.