Condition Monitoring (CM) is considered an effective method to improve the reliability of wind turbines and implement cost-effective maintenance. This paper presents a single hidden-layer feed forward neural network (SLFN), trained using an extreme learning machine (ELM) algorithm, for condition monitoring of wind turbines. Gradient-based algorithms are commonly used to train SLFNs; however, these algorithms are slow and may become trapped in local optima. The use of an ELM algorithm can dramatically reduce learning time and overcome issues associated with local optima. In this paper, the ELM model is optimized using a genetic algorithm. The residual signal obtained by comparing the model and actual output is analyzed using the Mahalanobis distance measure due to its ability to capture correlations among multiple variables. An accumulated Mahalanobis distance value, obtained from a range of components, is used to evaluate the heath of a gearbox, one of the critical subsystems of a wind turbine. Models have been identified from supervisory control and data acquisition (SCADA) data obtained from a working wind farm. The results show that the proposed training method is considerably faster than traditional techniques, and the proposed method can efficiently identify faults and the health condition of the gearbox in wind turbines. IET Review Copy Only IET Renewable Power Generation This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.
An important aspect of flood risk management is the issuing of timely flood alerts. The spatial, as well as temporal, scale of these warnings is important. In many situations efficient risk management may be aided by the provision of local flood predictions at a high spatial resolution. Examples of such situations include issuing warnings for small groups of outlying houses or key infrastructure locations such as power sub-stations. In this paper a methodology for providing automated, detailed and location specific warnings which are computed 'on-site' is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.