[1] Numerical simulations using a fire model, FIRETEC, coupled to an atmospheric dynamics model, HIGRAD, are examined to investigate several fundamental aspects of fire behavior in grasslands, and specifically the dependence of this behavior on the ambient atmospheric winds and on the initial length of the fire line. The FIRETEC model is based on a multi-phase transport approach, and incorporates representations of the physical processes that govern wildfires, such as combustion and radiative and convective heat exchange. Results from the coupled model show that the forward spread of the simulated fires increases with increasing ambient wind speed, and the spread rates are consistent with those observed in field experiments of grass fires; however, the forward spread also depends significantly on the initial length of the fire line, and for a given ambient wind speed the spread rate for long (100 m) lines is greater than that for short (16 m) lines. The spread of the simulated fires in the lateral direction also depends on the ambient wind speed and the length of the fire line, and a possible explanation for this effect is given. For weak ambient winds, the shape of the fire perimeter is dramatically different from that seen with higher wind speeds. The shape of the fire perimeter is also shown to depend on the initial length of the fire line. These differences in fire behavior are attributed to the differences in the nature of the coupled atmosphere-fire interactions among these cases, and are described in terms of the complex interplay between radiative and convective heat transfer.Citation: Linn, R. R., and P. Cunningham (2005), Numerical simulations of grass fires using a coupled atmosphere -fire model: Basic fire behavior and dependence on wind speed,
On the afternoon of 18 January 2003, wildfires swept through several outer suburbs of Canberra (Australia) producing, inter alia, a series of large pyro‐cumulonimbus cells and at least one tornado. The results of a large‐eddy simulation with a parameterized fire are reported here. The simulation, motivated by the Canberra wildfires and severe storms, captures the main characteristics of the observed pyro‐cumulonimbi, including the formation of a tornado close to where one was observed. In addition, the model develops prominent horizontally oriented vortices on the western side of the fire in the direction of the low‐level shear, and a series of horizontally oriented vortices on the upstream side of the convection column. The production of water by the fire is critical for the development of a pyro‐cumulonimbus cell intense enough to reach the tropopause as observed and plays a significant role in the associated tornadogenesis.
The structure and dynamics of buoyant plumes arising from surface-based heat sources in a vertically sheared ambient atmospheric flow are examined via simulations of a three-dimensional, compressible numerical model. Simple circular heat sources and asymmetric elliptical ring heat sources that are representative of wildland fires of moderate intensity are considered. Several different coherent vortical structures that dominate the plume structure and evolution are evident in the simulations, and these structures correspond well with those observed in plumes from wildland fires. For the circular source, these structures include: (i) a counter-rotating vortex pair aligned with the plume trajectory that is associated with a bifurcation of the plume, (ii) transverse shear-layer vortices on the upstream face of the plume, and (iii) vertically oriented wake vortices that form periodically with alternating sign on either side of the downstream edge of the plume base. For the elliptical ring source, a streamwise counter-rotating vortex pair is apparent on each flank, and a transverse horizontal vortex is observed above the head of the source. In all simulations the plume cross section is represented poorly by a self-similar Gaussian distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.