The killer phenomenon of yeasts was investigated in naturally occurring yeast communities. Yeast species from communities associated with the decaying stems and fruits of cactus and the slime fluxes of trees were studied for production of killer toxins and sensitivity to killer toxins produced by other yeasts. Yeasts found in decaying fruits showed the highest incidence of killing activity (30/112), while yeasts isolated from cactus necroses and tree fluxes showed lower activity (70/699 and 11/140, respectively). Cross-reaction studies indicated that few killer-sensitive interactions occur within the same habitat at a particular time and locality, but that killer-sensitive reactions occur more frequently among yeasts from different localities and habitats. The conditions that should be optimal for killer activity were found in fruits and young rots of Opuntia cladodes where the pH is low. The fruit habitat appears to favor the establishment of killer species. Killer toxin may affect the natural distribution of the killer yeast Pichia kluyveri and the sensitive yeast Cryptococcus cereanus. Their distributions indicate that the toxin produced by P. kluyveri limits the occurrence of Cr. cereanus in fruit and Opuntia pads. In general most communities have only one killer species. Sensitive strains are more widespread than killer strains and few species appear to be immune to all toxins. Genetic study of the killer yeast P. kluyveri indicates that the mode of inheritance of killer toxin production is nuclear and not cytoplasmic as is found in Saccharomyces cerevisiae and Kluyveromyces lactis.
At two locations in the Sonoran Desert, yeasts were sampled from species of Drosophila, the flies' cactus hosts, and other neighboring sources of cactophilic yeasts to determine the relation between the yeasts vectored by the fly and the yeasts found in their breeding sites. D. mojavensis, D. nigrospiracula, and D. mettleri vectored yeast assemblages significantly more similar to the yeast species found on the rot from which the flies were collected than to the yeasts found on other rots from the flies host cactus or other rotting cactus at the same site. Rots with Drosophila had fewer yeast species than those without flies, suggesting that flies were associated with younger rots. Rots with flies and the Drosophila also had more yeast species with the capability to produce ethyl acetate than rots without flies. The results support the contention that cactophilic Drosophila feed on a subset of the yeasts available in an area, and may act to maintain differences among the yeast communities found on different species of cactus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.