SARS‐CoV‐2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti‐virals. Within the international Covid19‐NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80% of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR‐detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure‐based drug design against the SCoV2 proteome.
Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.
Motivation Drug discovery practitioners in industry and academia use semantic tools to extract information from online scientific literature to generate new insights into targets, therapeutics and diseases. However, due to complexities in access and analysis, patent-based literature is often overlooked as a source of information. As drug discovery is a highly competitive field, naturally, tools that tap into patent literature can provide any actor in the field an advantage in terms of better informed decision making. Hence, we aim to facilitate access to patent literature through the creation of an automatic tool for extracting information from patents described in existing public resources. Results Here, we present PEMT, a novel patent enrichment tool, that takes advantage of public databases like ChEMBL and SureChEMBL to extract relevant patent information linked to chemical structures and/or gene names described through FAIR principles and metadata annotations. PEMT aims at supporting drug discovery and research by establishing a patent landscape around genes of interest. The pharmaceutical focus of the tool is mainly due to the subselection of International Patent Classification (IPC) codes, but in principle, it can be used for other patent fields, provided that a link between a concept and chemical structure is investigated. Finally, we demonstrate a use-case in rare diseases by generating a gene-patent list based on the epidemiological prevalence of these diseases and exploring their underlying patent landscapes. Availability and implementation PEMT is an open-source Python tool and its source code and PyPi package are available at https://github.com/Fraunhofer-ITMP/PEMT and https://pypi.org/project/PEMT/ respectively. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.