An all-optical and passively carrier-to-envelope-phase-stabilized (CEP-stabilized) optical parametric chirped pulse amplification (OPCPA) system is demonstrated with sub-250-mrad CEP stability over 11 min and better than 100 mrad over 11 s. This is achieved without any electronic CEP stabilization loop for 160 kHz pulse repetition rate in the few cycle regime.
We present a novel mid-IR source based on optical parametric chirped pulse amplification (OPCPA) generating 96 fs pulses (9.0 cycles) at 3.2 mm with an energy of 1.2 microJ, at a repetition rate of 100 kHz. The amplified spectrum supports a minimum Fourier transform limited pulse duration of 45 fs, or 4.2 cycles. Our use of OPCPA allows the direct amplification of few-cycle pulses at this mid-IR wavelength, and is inherently scalable to higher energies. The seed source for the system is based on difference frequency generation (DFG) between two outputs of the same fibre laser: this source is expected to be intrinsically CEP stable.
We report on what is believed to be the first large-aperture and high-energy optical parametric chirped pulse amplification system. The system, based on a three-stage amplifier, shows 25% pump-to-signal conversion efficiency and amplification of the full 70 nm width of the seed spectrum. Pulse compression to 84 fs achieved after amplification indicates a potential of 300 TW pulse power for 35 J amplified pulse energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.