Turbulent filling of molten metal in sand-casting leads to bi-films, porosity and oxide inclusions which results in poor mechanical properties and high scrap rate of sand castings. Hence, it is critical to understand the metal flow in sand-molds, i.e., casting hydrodynamics to eliminate casting defects. While multiple numerical methods have been applied to simulate this phenomenon for decades, harsh foundry environments and expensive x-ray equipment have limited experimental approaches to accurately visualize metal flow in sand molds. In this paper, a novel approach to solve this challenge is proposed using Succinonitrile (SCN) as a more accurate metal analog in place of water. SCN has a long history in solidification research due to its BCC (Body-Centered-Cubic) crystal structure and dendrite-like solidification (melting temperature ~60 °C) like molten aluminum. However, this is the first reported study on applying SCN through novel casting hydrodynamics to accurately visualize melt flow for casting studies. This paper used numerical simulations and experiments using both water and SCN to identify the critical dimensionless numbers to perform accurate metal flow analog testing. Froude’s number and wall roughness were identified as critical variables. Experimental results show that SCN flow testing was more accurate in recreating the flow profile of molten aluminum, thus validating its utility as a metal analog for metal flow research. Findings from this study can be used in future metal flow analysis such as: runner, in-gate and integrated filling-feeding-solidification studies.
3D sand-printing (3DSP) has become more popular in foundry applications due to its ability to create complex gating geometries. Since filling related defects, like entrained air and bi-films, are most commonly caused by high melt velocity and turbulence, recent 3DSP research has focused on designing gating systems to reduce melt velocity and turbulence. However, there have been no reported efforts on advancements in the design of runner extensions as a method to improve casting quality, despite its tremendous impact on the initial metal flow characteristics. The ability to fabricate 3DSP molds allow for unique runner extension designs that aid in improving casting quality. This paper is the first study known to the authors that investigates novel 3D runner extension designs to determine the most effective design for reducing sand casting defects. Based on literature review and design principles developed for 3D sprue geometries, six different runner extensions were studied using Computational Fluid Dynamics (CFD) modeling for foundry pouring conditions. The designs were evaluated on their ability to reduce defects like entrained air and bubbles, as well as to prevent backflow and reflected waves. An unweighted ranking matrix and comparison matrix against the control (straight runner extension) has been established based on air entrainment, tracer, voids, and extension volume. The results showed that the by-pass principal and surge control systems are effective at reducing reflective waves and controlling the ingate flow. The novel 3D duckbill trap extension proposed in this study had the best overall performance based on a 16% reduction in entrained air and a 71% reduction in void particles in the casting volume compared to the control extension design. These results provide a framework to further optimize runner extensions, utilize the advantages of 3D Sand-Printing technology to improve mechanical strength and reduce filling defects in sand-casting.
As 3D Sand-Printing technology becomes more widely available to the casting market, the search for opportunities to take advantage of its freedom of design is critical for its rapid adoption by the casting community. This original research investigates casting design principles towards defect-free alloy Nickel-Aluminum Bronze (NAB). This is an alloy of interest for marine applications due to its corrosion resistance, mechanical strength and good castability. Numerical modeling of flow within a casting is examined, and rigging redesigns are proposed to improve casting quality by controlling flow behavior. It has been demonstrated that turbulence and filling velocity are determining factors that seriously impact casting performance due to the generation of casting defects. Among these are bifilm formations, gas and sand entrapment and cold shut. This work examines the effectiveness of mathematically designed rigging components in controlling mold filling and compares the results to a conventional casting rig. Design solutions are proposed using 3DSP that can be directly applied to casting operations of Nickel-Aluminum Bronze. The results from this study demonstrate the effectiveness of mathematically designed sprues to reduce filling velocity of Nickel-Aluminum Bronze. The procedure followed here can be extended to marine casting production environments. Findings from this study can be seamlessly transferred to castings of any geometry, alloy and pouring conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.