Chemical mixtures have recently come to the attention of open standards and data structures for capturing machine-readable descriptions for informatics uses. At the present time, essentially all transmission of information about mixtures is done using short text descriptions that are readable only by trained scientists, and there are no accessible repositories of marked-up mixture data. We have designed a machine learning tool that can interpret mixture descriptions and upgrade them to the high-level Mixfile format, which can in turn be used to generate Mixtures InChI notation. The interpretation achieves a high success rate and can be used at scale to markup large catalogs and inventories, with some expert checking to catch edge cases. The training data that was accumulated during the project is made openly available, along with previously released mixture editing tools and utilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.