No abstract
Matrix metalloproteinase-type 2 (MMP-2) degrades extracellular matrix, mediates cell migration and tissue remodeling, and is implicated in mediating neural crest (NC) and cardiac development. However, there is little information regarding the expression and distribution of MMP-2 during cardiogenesis and NC morphogenesis. To elucidate the role of MMP-2, we performed a comprehensive study on the temporal and spatial distribution of MMP-2 mRNA and protein during critical stages of early avian NC and cardiac development. We found that ectodermally derived NC cells did not express MMP-2 mRNA during their initial formation and early emigration but encountered MMP-2 protein in basement membranes deposited by mesodermal cells. While NC cells did not synthesize MMP-2 mRNA early in migration, MMP-2 expression was seen in NC cells within the cranial paraxial and pharyngeal arch mesenchyme at later stages but was never detected in NC-derived neural structures. This suggested NC MMP-2 expression was temporally and spatially dependent on tissue interactions or differed within the various NC subpopulations. MMP-2 was first expressed within cardiogenic splanchnic mesoderm before and during the formation of the early heart tube, at sites of active pharyngeal arch and cardiac remodeling, and during cardiac cushion cell migration. Collectively, these results support the postulate that MMP-2 has an important functional role in early cardiogenesis, NC cell and cardiac cushion migration , and remodeling of the pharyngeal arches and cardiac heart tube. Heart development begins with the formation of cardio-genic fields, specification of the cardiac-cell lineages, and designation of the anterior/posterior and right/left axis of primary heart tube. Endocardial cells and myocardial cells differentiate from splanchnic mesoderm and organize into two primitive heart rudiments that coalesce, forming a single heart tube consisting of endocardium and myocardium separated by extracellular matrix (ECM). This tubular heart loops and is remodeled into an S-shaped tube, while the primitive heart chambers expand and develop muscular septa and trabeculae. In addition, extensive remodeling of the tubular heart aligns the right and left atrioventricular (AV) canals with future left and right ventricles, reshapes the bulboventricular flange, and widens the conus arterio-sus. These remodeling events require extensive modification of both cellular and ECM components. Aside from remodeling, separation of the tubular heart into a four-chambered heart involves the formation of new mesenchymal tissue. The development of the AV septum requires the formation, migration, proliferation, and dif
No abstract
Swiss mouse 3T3 cells, when grown in the presence of 5 mM chlorate, an inhibitor of PAPS synthesis, produce heparan sulfate glycosaminoglycan chains containing only about 8% of the sulfate normally present and which have lost the ability to bind to fibronectin. These undersulfated chains are sensitive to nitrous acid at pH 4.5, indicating that many glucosaminyl residues have unsubstituted amino groups. The iduronic acid content of the heparan sulfate produced in the presence of chlorate is reduced to less than 7% as compared to the 36% in that from untreated cells. The chlorate-treated cells do not demonstrate any alterations in their growth control. However, the spreading behavior of these cells is altered to a flat rounded morphology compared to the more typical fibroblastic appearance of the untreated cell. The sulfation of chondroitin chains is also inhibited, but at a lower chlorate concentration which does not alter growth control or the spreading ability of the cells. These data indicate that (a) 3T3 cell surface heparan sulfate proteoglycan is not involved in growth control but may be involved in cell spreading, (b) the use of chlorate should be a valuable method for the study of the biosynthesis and structure/function relationships of sulfated glycosaminoglycans, and (c) the temporal sequence of the heparan sulfate chain modification reactions predicted from results of studies with cell-free extracts also operates in the cell.
During heart organogenesis, the spatiotemporal organization of the extracellular matrix (ECM) undergoes significant remodeling. Because matrix metalloproteinases (MMPs) are known to be key regulators of cell-matrix interactions, we analyzed the role(s) of MMPs, and specifically MMP-2, in early heart development. Both MMP-2 neutralizing antibody and the broad-spectrum MMP inhibitor Ilomastat in a temporal manner, when applied between chick embryonic stages 5 (primitive streak stage) to stage 12 (ϳ16-somites), produced severe heart tube defects. Exposure to the MMP inhibitor at stage 5 produced various degrees of cardia bifida. At the seven-somite stage, MMP-2/Ilomastat inhibition caused a shift in normal left-right patterning of cell proliferation within the dorsal mesocardium and mesoderm of the anterior heart field that correlated with a change in looping direction. MMP inhibition at the 10-to 12-somite stage resulted in an arrest of heart tube bending by inhibiting the breakdown of the dorsal mesocardial ECM. The experimental observations suggest that MMP activity regulates the coordination of early heart organogenesis by affecting ventral closure of the heart and gut tubes, asymmetric cell proliferation in the dorsal mesocardium to drive looping direction, and ECM degradation within the dorsal mesocardium allowing looping to proceed toward completion. Developmental Dynamics 233:739 -753, 2005.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.