Objective: Little is known of the metabolism of different isoforms of adiponectin. We therefore (a) characterised the size distribution of human adiponectin in relation to gender, body composition and following a challenge with a fat meal or oral glucose in humans, and (b) studied the metabolism of isoforms of human adiponectin in rabbits. Method: Electrophoresis, blotting and chromatography were used to characterise human adiponectin in 36 healthy subjects, including 15 with at least two first-degree relatives with type 2 diabetes, before and after consumption of a fatty meal or glucose. The metabolism of column-fractionated human adiponectin was studied in rabbits, some of which were coinjected with insulin. Results: Females had a higher proportion of high molecular weight (HMW) and hexameric adiponectin (P ¼ 0.002 and 0.004 respectively), and a lower proportion of trimers (P , 0.0001) than males. Females also showed a strong negative relationship between body fat measures and the proportion of HMW adiponectin. There were no differences in isoforms between insulin-resistant and -sensitive subjects, or following oral glucose or a fat meal. Adiponectin in rabbits had an extravascular/intravascular ratio of 0.71, and a half-life (T1/2) of 14.3 h. Metabolism was not influenced by insulin or reduction of sulphydryl bonds. HMW and trimeric isoforms had a significantly different T1/2 of 13.0 and 17.5 h respectively (P , 0.05), and these isoforms did not interconvert in vivo. Conclusions: Human adiponectin is present as trimers, hexamers and HMW forms. Females had a higher proportion and absolute amount of HMW species compared with males, and female, but not male, subjects showed a strong negative relationship between measures of body fat, and the proportion of HMW species. These isoforms did not respond to challenge in man with a fatty meal or oral glucose, and in the rabbit, to injected insulin. HMW adiponectin was more rapidly metabolised than the trimeric form, but both were stable in vivo, and did not interconvert. We conclude that human adiponectin is much longer-lived than is the case with other hormones, a finding with positive implications for the potential to supplement levels of adiponectin in man.European Journal of Endocrinology 153 409-417
OBJECTIVE:Adiponectin is an adipose-specific protein with short-term effects in vivo on glucose and fatty acid levels. We studied the plasma concentration and the proteolytic activation status of adiponectin following the consumption of a high-fat, lowcarbohydrate meal. DESIGN: Analysis of adiponectin concentration and polypeptide structure after consumption of a fat meal. SUBJECTS: Normal subjects (n ¼ 24) and first-degree relatives of patients with type II diabetes (n ¼ 20). MEASUREMENTS: All subjects had a normal fasting plasma glucose and glucose tolerance. Blood was collected for the determination of plasma insulin, adiponectin, triglyceride, and free fatty acids. Body composition was assessed with dual-energy X-ray absorptiometry and whole-body insulin sensitivity with a euglycaemic, hyperinsulinaemic clamp. Postprandial response over 6 h was determined for plasma adiponectin, glucose, insulin, triglyceride, and free fatty acids. Adiponectin was measured by commercial RIA and its polypeptide structure examined by Western blotting. RESULTS: The relatives were more insulin resistant and had increased adiposity compared with control subjects. There was no significant difference in postprandial response in fatty acids, triglyceride, or insulin between the groups. Postprandial levels of adiponectin measured by radioimmunoassay were not significantly different from fasting levels, and no breakdown products of adiponectin were detectable in postprandial samples by Western blotting. CONCLUSIONS: Levels of circulating adiponectin do not alter in response to a fat meal, despite evidence in mice that acute changes in adiponectin significantly affect postprandial fatty acid flux. Moreover, a fat meal challenge did not lead to significant activation of adiponectin by proteolytic conversion.
Ischemia/reperfusion (IR) injury is a leading cause of acute renal failure and an important contributor to allograft damage. Tissue factor (TF) is up-regulated during IR, and TF inhibition reduces renal injury. However, the underlying mechanisms by which TF contributes to injury have not been elucidated. We postulated that TF contributes to IR injury by production of coagulation proteases and subsequent signaling by protease activated receptor (PARs). We compared renal injury after 25 minutes of bilateral renal ischemia and varying periods of reperfusion in C57BL/6 mice, those expressing low levels of TF (low-TF), hirudin-treated C57BL/6, and mice lacking either PAR-1 or PAR-2. C57BL/6 mice developed severe renal failure and died within 48 hours of reperfusion. In contrast, low-TF, hirudin-treated C57BL/6, and PAR-1-/- mice were protected from renal failure and had reduced mortality, tubular injury, neutrophil accumulation, and lower levels of the chemokines KC and MIP-2. Importantly, PAR-1-/- mice had lower chemokine levels despite up-regulation of TF and fibrin deposition. In addition, treating PAR-1-/- mice with hirudin conferred no additional benefit. Somewhat surprisingly, PAR-2 deficiency did not protect from renal failure. These experiments indicate that increased TF activity after renal IR leads to increased CXC chemokine expression and subsequent neutrophil-mediated injury predominantly by thrombin-dependent PAR-1 signaling.
BackgroundThe early prediction of delayed graft function (DGF) would facilitate patient management after kidney transplantation.MethodsIn a single-centre retrospective analysis, we investigated kinetic estimated GFR under non-steady-state conditions, KeGFR, in prediction of DGF. KeGFRsCr was calculated at 4h, 8h and 12h in 56 recipients of deceased donor kidneys from initial serum creatinine (sCr) concentrations, estimated creatinine production rate, volume of distribution, and the difference between consecutive sCr values. The utility of KeGFRsCr for DGF prediction was compared with, sCr, plasma cystatin C (pCysC), and KeGFRpCysC similarly derived from pCysC concentrations.ResultsAt 4h, the KeGFRsCr area under the receiver operator characteristic curve (AUC) for DGF prediction was 0.69 (95% CI: 0.56–0.83), while sCr was not useful (AUC 0.56, (CI: 0.41–0.72). Integrated discrimination improvement analysis showed that the KeGFRsCr improved a validated clinical prediction model at 4h, 8h, and 12h, increasing the AUC from 0.68 (0.52–0.83) to 0.88 (0.78–0.99) at 12h (p = 0.01). KeGFRpCysC also improved DGF prediction. In contrast, sCr provided no improvement at any time point.ConclusionsCalculation of KeGFR from sCr facilitates early prediction of DGF within 4 hours of renal transplantation.
IR in ESKD is not explained by the change in isoformic distribution, or by AdipoR down-regulation or dysfunction. Rather, this receptor-ligand axis is up-regulated and may be a beneficial response to the inflammatory milieu of ESKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.