Allergic rhinitis affects the quality of life of millions of people worldwide. Air pollution not only causes morbidity, but nearly 3 million people per year die from unhealthy indoor air exposure. Furthermore, allergic rhinitis and air pollution interact. This report summarizes the discussion of an International Expert Consensus on the management of allergic rhinitis aggravated by air pollution. The report begins with a review of indoor and outdoor air pollutants followed by epidemiologic evidence showing the impact of air pollution and climate change on the upper airway and allergic rhinitis. Mechanisms, particularly oxidative stress, potentially explaining the interactions between air pollution and allergic rhinitis are discussed. Treatment for the management of allergic rhinitis aggravated by air pollution primarily involves treating allergic rhinitis by guidelines and reducing exposure to pollutants. Fexofenadine a non-sedating oral antihistamine improves AR symptoms aggravated by air pollution. However, more efficacy studies on other pharmacological therapy of coexisting AR and air pollution are currently lacking.
To assess the ability of the nose to warm and humidify inhaled air, we developed a nasopharyngeal probe and measured the temperature and humidity of air exiting the nasal cavity. We delivered cold, dry air (19-1 degrees C, <10% relative humidity) or hot, humid air (37 degrees C, >90% relative humidity) to the nose via a nasal mask at flow rates of 5, 10, and 20 l/min. We used a water gradient across the nose (water content in nasopharynx minus water content of delivered air) to assess nasal function. We studied the characteristics of nasal air conditioning in 22 asymptomatic, seasonally allergic subjects (out of their allergy season) and 11 nonallergic normal subjects. Inhalation of hot, humid air at increasingly higher flow rates had little effect on both the relative humidity and the temperature of air in the nasopharynx. In both groups, increasing the flow of cold, dry air lowered both the temperature and the water content of the inspired air measured in the nasopharynx, although the relative humidity remained at 100%. Water gradient values obtained during cold dry air challenges on separate days showed reproducibility in both allergic and nonallergic subjects. After exposure to cold, dry air, the water gradient was significantly lower in allergic than in nonallergic subjects (1,430 +/- 45 vs. 1,718 +/- 141 mg; P = 0.02), suggesting an impairment in their ability to warm and humidify inhaled air.
We reviewed the records of 504 patients admitted to the American University of Beirut Medical Center during a 10-year period for treatment of aspiration of a foreign body into the tracheobronchial tree. All underwent rigid fiberoptic bronchoscopy for removal of the foreign body. Complications occurred in 42 patients (8%) and were classified as intraoperative (7 patients), postoperative (25 patients), and failure to retrieve the foreign body by bronchoscopy (9 patients). These complications included respiratory distress necessitating tracheotomy and/or assisted ventilation, bronchial pneumonia, pneumothorax, bradycardia, and cardiac arrest. Variables that were examined were the age and sex of the patient, history of multiple previous bronchoscopies, delay in diagnosis and/or treatment, duration of the procedure, type and location of the foreign body, and use of corticosteroids during surgery. The most important variables that were of value in predicting the occurrence of complications were the history of previous bronchoscopy, the duration of the procedure, and the type of foreign body. Age, sex, delay in diagnosis and treatment, and intraoperative use of corticosteroids, while important, had no predictive value. Detailed results with guidelines for prevention and management are presented.
Managing patients with severe asthma during the coronavirus pandemic and COVID-19 is a challenge. Authorities and physicians are still learning how COVID-19 affects people with underlying diseases, and severe asthma is not an exception. Unless relevant data emerge that change our understanding of the relative safety of medications indicated in patients with asthma during this pandemic, clinicians must follow the recommendations of current evidence-based guidelines for preventing loss of control and exacerbations. Also, with the absence of data that would indicate any potential harm, current advice is to continue the administration of biological therapies during the COVID-19 pandemic in patients with asthma for whom such therapies are clearly indicated and have been effective. For patients with severe asthma infected by SARS-CoV-2, the decision to maintain or postpone biological therapy until the patient recovers should be a case-by-case based decision supported by a multidisciplinary team. A registry of cases of COVID-19 in patients with severe asthma, including those treated with biologics, will help to address a clinical challenge in which we have more questions than answers.
Precision allergy molecular diagnostic applications (PAMD@) is increasingly entering routine care. Currently, more than 130 allergenic molecules from more than 50 allergy sources are commercially available for in vitro specific immunoglobulin E (sIgE) testing. Since the last publication of this consensus document, a great deal of new information has become available regarding this topic, with over 100 publications in the last year alone. It thus seems quite reasonable to publish an update. It is imperative that clinicians and immunologists specifically trained in allergology keep abreast of the new and rapidly evolving evidence available for PAMD@. PAMD@ may initially appear complex to interpret; however, with increasing experience, the information gained provides relevant information for the allergist. This is especially true for food allergy, Hymenoptera allergy, and for the selection of allergen immunotherapy. Nevertheless, all sIgE tests, including PAMD@, should be evaluated within the framework of a patient's clinical history, because allergen sensitization does not necessarily imply clinical relevant allergies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.