Catastrophic hypotheses for mass extinctions are commonly criticized because many taxa gradually disappear from the fossil record prior to the extinction. Presumably, a geologically instantaneous catastrophe would not cause a reduction in diversity or a series of minor extinctions before the actual mass extinction. Two types of sampling effects, however, could cause taxa to appear to decline before their actual biotic extinction. The first of these is reduced sample size provided in the sedimentary record and the second, which we examine in greater detail, is artificial range truncation. The fossil record is discontinuous in time and the recorded ranges of species or of higher taxa can only extend to their last known occurrence in the fossil record. If the distribution of last occurrences is random with respect to actual biotic extinction, then apparent extinctions will begin well before a mass extinction and will gradually increase in frequency until the mass extinction event, thus giving the appearance of a gradual extinction. Other factors, such as regressions, can exacerbate the bias toward gradual disappearance of taxa from the fossil record. Hence, gradual extinction patterns prior to a mass extinction do not necessarily eliminate catastrophic extinction hypotheses. The recorded ranges of fossils, especially of uncommon taxa or taxa in habitats not represented by a continuous record, may be inadequate to test either gradual or catastrophic hypotheses.
The mid-Paleozoic was punctuated by a rapid radiation of durophagous (shell-crushing) predators. These new predators were primarily placoderm and chondrichthyan fishes but probably also included phyllocarid and eumalacostracan arthropods. Coincident with the radiation of these durophages, beginning in the mid-Devonian, there was an increase in the frequency of predation-resistant morphologies in a variety of marine invertebrate taxa. Among bellerophontid molluscs, disjunct coiling disappeared and umbilici became less common while the frequency of genera with sculpture increased. The abundance of brachiopod genera with spines on one or both valves increased dramatically. Sculpture became more pronounced and common among genera of coiled nautiloids. Inadunate and camerate crinoids showed a marked increase in spinosity, and all three crinoid subclasses tended to develop thicker thecal plates.Trends toward increasing relative frequencies of predation-resistant features were formed in different ways. Bellerophontid genera lacking predation-resistant features tended to go extinct, leaving the sculptured, tighdy coiled forms as the predominant forms. Among Brachiopoda, the radiation of productids provided the tremendous increase in numbers of spinose genera. Among crinoids, predation-resistant features were acquired through evolution within established clades.These observations suggest that predation by shell-crushing predators has been an important control on the morphology and composition of the marine invertebrate fauna since at least the Middle Devonian. The mid-Paleozoic radiation of durophages and response of the marine fauna was in many respects similar to events of the Mesozoic Marine Revolution, in effect, the Paleozoic precursor to that event.
Modern marine plankton communities include a broad diversity of metazoans that are suspension-feeding or micropredatory as adults. Many benthic marine species have larval stages that reside, and often feed, in the plankton for brief to very long periods of time, and most marine benthic communities include large numbers of suspension-feeders. This has not always been the case. Cambrian benthic communities included relatively few suspension-feeders. Similarly, there were few metazoan clades represented in the plankton, either as adult suspension-feeders or as larvae. Review of the fossil record suggests that the diversification of the plankton and suspension-feeding marine animals began in the Late Cambrian and continued into the Ordovician. These changes were accompanied by, and probably influenced, concurrent major changes in the marine realm, including an increase in tiering within benthic communities, the replacement of the Cambrian fauna by the Paleozoic fauna, and a general taxonomic diversification. The ultimate cause of these changes is uncertain, but it appears likely that the plankton was and is a refuge from predation and bioturbation for adults and larvae alike. The expansion in plankton biomass thus provided increased ecological opportunities for suspension-feeders in the plankton and benthos.
Using computer simulations and analytic calculations, we have evaluated whether conspicuous expansions and contractions of natural clades may have represented chance fluctuations that occurred while probabilities of speciation and extinction remained equal and constant. Our results differ from those of previous workers, who have not scaled generating parameters empirically at the species level. We have found that the waxing and waning of many real clades have almost certainly resulted from changes in probabilities of speciation and extinction. For some of these changes, likely explanations are evident. The emplacement of adaptive innovations, for example, has at times elevated probability of speciation. We conclude that chance factors have not played a dominant role in producing dramatic changes in standing diversity within speciose higher taxa.
Stage-level range data for 983 Jurassic and Cretaceous ammonite genera, distributed within 83 families, were analyzed by assigning absolute ages to stages or substages. We found ammonite genera to have a mean generic range of 7.3 Myr/ammonite genus. Using a similar methodology, mean generic range per family was also computed. The distribution of long-ranging genera (arbitrarily chosen as those ammonite genera ranging for 12 Myr or more) among families was found to be nonrandom. Instead, long-ranging genera were found to be concentrated in a few families, resulting in significant heterogeneity in the distribution of generic longevities within families (taxotely sensu Raup and Marshall 1980). Although some of the long-ranging genera were found to be morphologically simpler than shorter-ranging genera, others were equally or even more complex, indicating that longevity among ammonite genera is not merely a taxonomic artifact, dependent on degree of differentiable conch morphology. Those Cretaceous families composed of a large number of long-ranging genera were also among the leaders in mean species longevity per family, based on species-level range data for Cretaceous ammonites of the Great Valley Sequence of California. Many of the long-ranging genera and species possess a similar morphologic attribute: siphuncular tubes (connecting rings) of small diameter but high wall thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.