Flooding and heavy rainfall have been associated with numerous outbreaks of leptospirosis around the world. With global climate change, extreme weather events such as cyclones and floods are expected to occur with increasing frequency and greater intensity and may potentially result in an upsurge in the disease incidence as well as the magnitude of leptospirosis outbreaks. In this paper, we examine mechanisms by which climate change can affect various ecological factors that are likely to drive an increase in the overall incidence as well as the frequency of outbreaks of leptospirosis. We will discuss the geographical areas that are most likely to be at risk of an increase in leptospirosis disease burden owing to the coexistence of climate change hazard risk, environmental drivers of leptospirosis outbreaks, local socioeconomic circumstances, and social and demographic trends. To reduce this disease burden, enhanced surveillance and further research is required to understand the environmental drivers of infection, to build capacity in emergency response and to promote community adaptation to a changing climate.
Freshwater resources are a high-priority issue in the Pacific region. Water shortage is a serious problem in many small island states, and many depend heavily on rainwater as the source of their water. Lack of safe water supplies is an important factor in diarrheal illness. There have been no previous studies looking specifically at the relationship between climate variability and diarrhea in the Pacific region. We carried out two related studies to explore the potential relationship between climate variability and the incidence of diarrhea in the Pacific Islands. In the first study, we examined the average annual rates of diarrhea in adults, as well as temperature and water availability from 1986 to 1994 for 18 Pacific Island countries. There was a positive association between annual average temperature and the rate of diarrhea reports, and a negative association between water availability and diarrhea rates. In the second study, we examined diarrhea notifications in Fiji in relation to estimates of temperature and rainfall, using Poisson regression analysis of monthly data for 1978-1998. There were positive associations between diarrhea reports and temperature and between diarrhea reports and extremes of rainfall. These results are consistent with previous research and suggest that global climate change is likely to exacerbate diarrheal illness in many Pacific Island countries.
The objective of the study was to investigate the relationship between reported incidence of dengue fever and El Niño southern oscillation (ENSO) in 14 island nations of the South Pacific. Using a mixed ecological study design, we calculated correlations between annual averages of the southern oscillation index (SOI), local temperature and rainfall, and dengue fever. We also calculated temporal correlations between monthly reports of dengue fever cases on different islands. There were positive correlations between SOI and dengue in 10 countries. In five of these (including all of the larger islands) there were also positive correlations between SOI and estimates of local temperature and/or rainfall. There were temporal correlations between monthly reports of dengue cases within two groups of countries. Climate changes associated with ENSO may trigger an increase in dengue fever transmission in larger, more populated islands where the disease is endemic. There was also evidence of propagation of infection from larger islands to smaller neighbors. Unlike the initiation of epidemics, this transfer between islands appears to be independent of interannual climate variations, pointing to the importance of modulating factors in dengue transmission such as population density and travel. In the future, models of the impact of climate change must attempt to account for these factors.ImagesFigure 1Figure 2Figure 3Figure 4
Restoration aims to return ecosystem services, including the human health benefits of exposure to green space. The loss of such exposure with urbanization and industrialization has arguably contributed to an increase in human immune dysregulation. The Biodiversity and Old Friends hypotheses have described the possible mechanisms of this relationship, and suggest that reduced exposure to diverse, beneficial microorganisms can result in negative health consequences. However, it is unclear whether restoration of biodiverse habitat can reverse this effect, and what role the environmental microbiome might have in such recovery. Here, we propose the Microbiome Rewilding Hypothesis, which specifically outlines that restoring biodiverse habitats in urban green spaces can rewild the environmental microbiome to a state that enhances primary prevention of human disease. We support our hypothesis with examples from allied fields, including a case study of active restoration that reversed the degradation of the soil bacterial microbiome of a former pasture. This case study used high‐throughput amplicon sequencing of environmental DNA to assess the quality of a restoration intervention in restoring the soil bacterial microbiome. The method is rapid, scalable, and standardizable, and has great potential as a monitoring tool to assess functional outcomes of green‐space restoration. Evidence for the Microbiome Rewilding Hypothesis will help motivate health professionals, urban planners, and restoration practitioners to collaborate and achieve co‐benefits. Co‐benefits include improved human health outcomes and investment opportunities for biodiversity conservation and restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.