The computation of the semiclassical Schrödinger equation presents major challenges because of the presence of a small parameter. Assuming periodic boundary conditions, the standard approach consists of semi-discretisation with a spectral method, followed by an exponential splitting. In this paper we sketch an alternative strategy. Our analysis commences from the investigation of the free Lie algebra generated by differentiation and by multiplication with the interaction potential: it turns out that this algebra possesses structure that renders it amenable to a very effective form of asymptotic splitting: exponential splitting where consecutive terms are scaled by increasing powers of the small parameter. This leads to methods that attain high spatial and temporal accuracy and whose cost scales like O(M log M ), where M is the number of degrees of freedom in the discretisation.
We investigate whether the many-body ground states of bosons in a generalized two-mode model with localized inhomogeneous single-particle orbitals and anisotropic long-range interactions (e.g., dipole-dipole interactions) are coherent or fragmented. It is demonstrated that fragmentation can take place in a single trap for positive values of the interaction couplings, implying that the system is potentially stable. Furthermore, the degree of fragmentation is shown to be insensitive to small perturbations on the single-particle level.
The Schrödinger eigenvalue problem is solved with the imaginary time propagation technique. The separability of the Hamiltonian makes the problem suitable for the application of splitting methods. High order fractional time steps of order greater than two necessarily have negative steps and cannot be used for this class of diffusive problems. However, there exist methods which use fractional complex time steps with positive real parts which can be used with only a moderate increase in the computational cost. We analyze the performance of this class of schemes and propose new methods which outperform the existing ones in most cases. On the other hand, if the gradient of the potential is available, methods up to fourth order with real and positive coefficients exist. We also explore this case and propose new methods as well as sixth-order methods with complex coefficients. In particular, highly optimized sixth-order schemes for near integrable systems using positive real part complex coefficients with and without modified potentials are presented. A time-stepping variable order algorithm is proposed and numerical results show the enhanced efficiency of the new methods.
A new way to compute the Taylor polynomial of a matrix exponential is presented which reduces the number of matrix multiplications in comparison with the de-facto standard Paterson-Stockmeyer method for polynomial evaluation. Combined with the scaling and squaring procedure, this reduction is sufficient to make the Taylor method superior in performance to Padé approximants over a range of values of the matrix norms. An efficient adjustment to make the method robust against overscaling is also introduced. Numerical experiments show the superior performance of our method to have a similar accuracy in comparison with state-of-the-art implementations, and thus, it is especially recommended to be used in conjunction with Lie-group and exponential integrators where preservation of geometric properties is at issue.
We build efficient and unitary (hence stable) methods for the solution of the linear time-dependent Schrödinger equation with explicitly time-dependent potentials in a semiclassical regime. The Magnus-Zassenhaus schemes presented here are based on a combination of the Zassenhaus decomposition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.