We show that the perturbation theory for dual semigroups (sun-star-calculus) that has proved useful for analyzing delay-differential equations is equally efficient for dealing with Volterra functional equations. In particular, we obtain both the stability and instability parts of the principle of linearized stability and the Hopf bifurcation theorem. Our results apply to situations in which the instability part has not been proved before. In applications to general physiologically structured populations even the stability part is new.
We study two-and three-compartment models of a hierarchical cell production system with cell division regulated by the level of mature cells. We investigate the structure of equilibria with respect to parameters as well as local stability properties for the equilibria. To interpret the results we adapt the concept of reproduction numbers, which is well known in ecology, to stem cell population dynamics. In the twocompartment model, the positive equilibrium is stable wherever it exists. In the three-compartment model, we find that the intermediate stage of differentiation is responsible for the emergence of an instability region in the parameter plane. Moreover, we prove that this region shrinks as the mortality rate for mature cells increases and discuss this result.
Abstract. Cannibalism is an interaction between individuals that can produce counterintuitive effects at the population level. A striking effect is that a population may persist under food conditions such that the non-cannibalistic variant is doomed to go extinct. This so-called life boat mechanism has received considerable attention. Implicitly, such studies sometimes suggest, that the life boat mechanism procures an evolutionary advantage to the cannibalistic trait.Here we compare, in the context of a size structured population model, the conditions under which the life boat mechanism works, with those that guarantee, that a cannibalistic mutant can invade successfully under the steady environmental conditions as set by a non-cannibalistic resident. We find qualitative agreement and quantitative difference. In particular, we find that a prerequisite for the life boat mechanism is, that cannibalistic mutants are successful invaders. Roughly speaking, our results show that cannibalism brings advantages to both the individuals and the population when adult food is limiting.
In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries can be defined in the (two-parameter) plane. We numerically trace these implicitly defined curves using alternatingly tangent prediction and Newton correction. Evaluation of the maps defining the curves involves integration over individual size and individual survival probability (and their derivatives) as functions of individual age. Such ingredients are often defined as solutions of ODE, i.e., in general only implicitly. In our case, the right-hand sides of these ODE feature discontinuities that are caused by an abrupt change of behavior at the size where juveniles are assumed to turn adult. So, we combine the numerical solution of these ODE with curve tracing methods. We have implemented the algorithms for "Daphnia consuming algae" models in C-code. The results obtained by way of this implementation are shown in the form of graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.