Interfacing photonic and solid-state qubits within a hybrid quantum architecture offers a promising route towards large scale distributed quantum computing. Ideal candidates for coherent qubit interconversion are optically active spins, magnetically coupled to a superconducting resonator. We report on an on-chip cavity QED experiment with magnetically anisotropic Er(3+)∶Y2SiO5 crystals and demonstrate collective strong coupling of rare-earth spins to a lumped element resonator. Moreover, the electron spin resonance and relaxation dynamics of the erbium spins are detected via direct microwave absorption, without the aid of a cavity.
We review progress in the development and applications of superconducting metamaterials. The review is organized in terms of several distinct advantages and unique properties brought to the metamaterials field by superconductivity. These include the lowloss nature of the meta-atoms, their compact structure, their extraordinary degree of nonlinearity and tunability, magnetic flux quantization and the Josephson effect, quantum effects in which photons interact with quantized energy levels in the meta-atom, as well as strong diamagnetism.
We report on experiments with superconducting metamaterials containing Josephson junctions. In these structures, split-ring resonators used in conventional metamaterials are replaced by superconducting loops that are interrupted by Josephson junctions, so called rf-SQUIDs. Like the split-ring resonators, these elements can be seen as LC-resonators that couple to the magnetic field. The advantage of superconducting thin-film metamaterials is that, due to the tunable intrinsic inductance of the Josephson junction, the resonance frequency of the rf-SQUID can be changed by applying an external dc magnetic field. We present experimental results that demonstrate the tunability of the resonance frequency of these devices.
The field of metamaterial research revolves around the idea of creating artificial media that interact with light in a way unknown from naturally occurring materials. This is commonly achieved using sub-wavelength lattices of electronic or plasmonic structures, so-called metaatoms. One of the ultimate goals for these tailored media is the ability to control their properties in situ. Here we show that superconducting quantum interference devices can be used as fast, switchable meta-atoms. We find that their intrinsic nonlinearity leads to simultaneously stable dynamic states, each of which is associated with a different value and sign of the magnetic susceptibility in the microwave domain. Moreover, we demonstrate that it is possible to switch between these states by applying nanosecond-long pulses in addition to the microwave-probe signal. Apart from potential applications for this all-optical metamaterial switch, the results suggest that multistability can also be utilized in other types of nonlinear meta-atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.