Ammonia-monochloroborane, NH3BH2Cl, has been synthesized from the reaction of ammonia-borane with HCl in Et2O. Decomposition of the solid under NH3 to 600 °C produced amorphous BN in 97% yield. The 11B magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectrum of the amorphous BN is indicative of boron in the same environment as in hexagonal BN. Subsequent pyrolysis of the amorphous BN to 1000 °C produced turbostratic BN. Pyrolysis of NH3BH2Cl under vacuum to 1100 °C led to the formation of turbostratic BN as confirmed by x-ray diffraction (XRD) analysis. Gas evolution during this pyrolysis confirmed that the precursor loses H2 and HCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.