Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution.
SummaryFrequency modulated Kelvin probe force microscopy (FM-KFM) is the method of choice for high resolution measurements of local surface potentials, yet on coarse topographic structures most researchers revert to amplitude modulated lift-mode techniques for better stability. This approach inevitably translates into lower lateral resolution and pronounced capacitive averaging of the locally measured contact potential difference. Furthermore, local changes in the strength of the electrostatic interaction between tip and surface easily lead to topography crosstalk seen in the surface potential. To take full advantage of the superior resolution of FM-KFM while maintaining robust topography feedback and minimal crosstalk, we introduce a novel FM-KFM controller based on a Kalman filter and direct demodulation of sidebands. We discuss the origin of sidebands in FM-KFM irrespective of the cantilever quality factor and how direct sideband demodulation enables robust amplitude modulated topography feedback. Finally, we demonstrate our single-scan FM-KFM technique on an active nanoelectronic device consisting of a 70 nm diameter InAs nanowire contacted by a pair of 120 nm thick electrodes.
The most direct definition of a patterning process' resolution is the smallest half-pitch feature it is capable of transferring onto the substrate. Here we demonstrate that thermal Scanning Probe Lithography (t-SPL) is capable of fabricating dense line patterns in silicon and metal lift-off features at sub 20 nm feature size. The dense silicon lines were written at a half pitch of 18.3 nm to a depth of 5 nm into a 9 nm polyphthalaldehyde thermal imaging layer by t-SPL. For processing we used a three-layer stack comprising an evaporated SiO 2 hardmask which is just 2-3 nm thick. The hardmask is used to amplify the pattern into a 50 nm thick polymeric transfer layer. The transfer layer subsequently serves as an etch mask for transfer into silicon to a depth of ≈ 65 nm. The line edge roughness (3 σ) was evaluated to be less than 3 nm both in the transfer layer and in silicon. We also demonstrate that a similar three-layer stack can be used for metal lift-off of high resolution patterns. A device application is demonstrated by fabricating 50 nm half pitch dense nickel contacts to an InAs nanowire.
A method for determining charge carrier concentration, mobility, and relaxation time in semiconducting nanowires is presented. The method is based on measuring both the electrical conductivity and the Seebeck coefficient of the nanowire. With knowledge on the bandstructure of the material, Fermi level and charge carrier concentration can be deduced from the Seebeck coefficient. The ratio of measured conductivity and inferred charge carrier concentration then leads to the mobility, and using the Fermi level dependence of mobility one can finally obtain the relaxation time. Using this approach we exemplarily analyze the characteristics of an n-type InAs nanowire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.