Recovery of overexploited marine populations has been slow, and most remain below target biomass levels. A key question is whether this is due to insufficient reductions in harvest rates or the erosion of population resilience. Using a global meta-analysis of overfished stocks, we find that resilience of those stocks subjected to moderate levels of overfishing is enhanced, not compromised, offering the possibility of swift recovery. However, prolonged intense overexploitation, especially for collapsed stocks, not only delays rebuilding but also substantially increases the uncertainty in recovery times, despite predictable influences of fishing and life history. Timely and decisive reductions in harvest rates could mitigate this uncertainty. Instead, current harvest and low biomass levels render recovery improbable for the majority of the world's depleted stocks.
Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and internal variability uncertainty, (iii) parametric uncertainty, and (iv) scenario uncertainty. For each uncertainty type, we then examine the current state-of-the-art in assessing and quantifying its relative importance. We consider whether the marine scientific community has addressed these types of uncertainty sufficiently and highlight the opportunities and challenges associated with doing a better job. We find that even within a relatively small field such as marine science, there are substantial differences between subdisciplines in the degree of attention given to each type of uncertainty. We find that initialization uncertainty is rarely treated explicitly and reducing this type of uncertainty may deliver gains on the seasonal-to-decadal time-scale. We conclude that all parts of marine science could benefit from a greater exchange of ideas, particularly concerning such a universal problem such as the treatment of uncertainty. Finally, marine science should strive to reach the point where scenario uncertainty is the dominant uncertainty in our projections.
Life for many of the world’s marine fish begins at the ocean surface. Ocean conditions dictate food availability and govern survivorship, yet little is known about the habitat preferences of larval fish during this highly vulnerable life-history stage. Here we show that surface slicks, a ubiquitous coastal ocean convergence feature, are important nurseries for larval fish from many ocean habitats at ecosystem scales. Slicks had higher densities of marine phytoplankton (1.7-fold), zooplankton (larval fish prey; 3.7-fold), and larval fish (8.1-fold) than nearby ambient waters across our study region in Hawai‘i. Slicks contained larger, more well-developed individuals with competent swimming abilities compared to ambient waters, suggesting a physiological benefit to increased prey resources. Slicks also disproportionately accumulated prey-size plastics, resulting in a 60-fold higher ratio of plastics to larval fish prey than nearby waters. Dissections of hundreds of larval fish found that 8.6% of individuals in slicks had ingested plastics, a 2.3-fold higher occurrence than larval fish from ambient waters. Plastics were found in 7 of 8 families dissected, including swordfish (Xiphiidae), a commercially targeted species, and flying fish (Exocoetidae), a principal prey item for tuna and seabirds. Scaling up across an ∼1,000 km2 coastal ecosystem in Hawai‘i revealed slicks occupied only 8.3% of ocean surface habitat but contained 42.3% of all neustonic larval fish and 91.8% of all floating plastics. The ingestion of plastics by larval fish could reduce survivorship, compounding threats to fisheries productivity posed by overfishing, climate change, and habitat loss.
Lithography-based additive manufacturing was introduced in the 1980s, and is still the method of choice for printing accurate plastic parts with high surface quality. Recent progress in this field has made tough photopolymer resins and cheap LED light engines available. This study presents the influence of photoinitiator selection and post-processing on the thermomechanical properties of various tough photopolymers. The influence of three photoinitiators (Ivocerin, BAPO, and TPO-L) on the double-bond conversion and mechanical properties was investigated by mid infrared spectroscopy, dynamic mechanical analysis and tensile tests. It was found that 1.18 wt % TPO-L would provide the best overall results in terms of double-bond conversion and mechanical properties. A correlation between double-bond conversion, yield strength, and glass transition temperature was found. Elongation at break remained high after post-curing at about 80–100%, and was not influenced by higher photoinitiator concentration. Finally, functional parts with 41 MPa tensile strength, 82% elongation at break, and 112 °C glass transition temperature were printed on a 405 nm DLP (digital light processing) printer.
The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone Aiptasia pallida the TSR domain promotes colonization of the host by the symbiotic dinoflagellate Symbiodinium minutum. Blocking TSR domains led to decreased colonization success, while adding exogenous TSRs resulted in a ‘super colonization’. Furthermore, gene expression of TSR proteins was highest at early time-points during symbiosis establishment. Our work characterizes the diversity of cnidarian TSR proteins and provides evidence that these proteins play an important role in the establishment of cnidarian-dinoflagellate symbiosis.DOI: http://dx.doi.org/10.7554/eLife.24494.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.