Abstract:Hyperbranched polymers show an outstanding potential for applications ranging from chemistry over nanotechnology to pharmacy. In order to take advantage of this potential, the underlying phase behaviour must be known. From the thermodynamic point of view, the modelling of these phase diagrams is quite challenging, because the thermodynamic properties depend on the architecture of the hyperbranched polymer as well as on the number and kind of present functional end groups. The influence of architecture can be taken into account via the lattice cluster theory (LCT) as an extension of the well-known Flory-Huggins theory. Whereas the Flory-Huggins theory is limited to linear polymer chains, the LCT can be applied to an arbitrary chain architecture. The number and the kind of functional groups can be handled via the Wertheim perturbation theory, applicable for directed forces between the functional groups and the surrounding solvent molecules. The combination of the LCT and the Wertheim theory can be established for the modelling or even prediction of the liquid-liquid equilibria (LLE) of polymer solutions in a single solvent or in a solvent mixture or polymer blends, where the polymer can have an arbitrary structure. The applied theory predicts large demixing regions for mixtures of linear polymers and hyperbranched polymers, as well as for mixtures made from two hyperbranched polymers. The introduction of empty lattice sites permits the theoretical investigation of pressure effects on phase behaviour. The calculated phase diagrams were compared with own experimental data or to experimental data taken from literature.
OPEN ACCESSPolymers 2012, 4 73
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.