The electrochemical reduction of carbon dioxide (CO 2 RR) offers a compelling route to energy storage and high-value chemical manufacture. The presence of sulfur atoms in catalyst surfaces promotes undercoordinated sites, thereby improving the electrochemical reduction of CO 2 to formate. The resulting sulfurmodulated tin catalysts accelerate CO 2 RR at geometric current densities of 55 mA cm À2 at À0.75 V versus RHE with a Faradaic efficiency of 93%.
We present a framework--validated using both modeling and experiment--to predict doping in CQD films. In the ionic semiconductors widely deployed in CQD films, the framework reduces to a simple accounting of the contributions of the oxidation state of each constituent, including both inorganic species and organic ligands. We use density functional theory simulations to confirm that the type of doping can be reliably predicted based on the overall stoichiometry of the CQDs, largely independent of microscopic geometrical bonding configurations. Studies employing field-effect transistors constructed from CQDs that have undergone various chemical treatments, coupled with Rutherford backscattering and X-ray photoelectron spectroscopy to provide compositional analysis, allow us to test and confirm the proposed model in an experimental framework. We investigate both p- and n-type electronic doping spanning a wide range of carrier concentrations from 10(16) cm(-3) to over 10(18) cm(-3), and demonstrate reversible switching between p- and n-type doping by changing the CQD stoichiometry. We show that the summation of the contributions from all cations and anions within the film can be used to predict accurately the majority carrier type. The findings enable predictable control over majority carrier concentration via tuning of the overall stoichiometry.
SummaryThe bacterioplankton diversity in large rivers has thus far been under-sampled despite the importance of streams and rivers as components of continental landscapes. Here, we present a comprehensive dataset detailing the bacterioplankton diversity along the midstream of the Danube River and its tributaries. Using 16S rRNA-gene amplicon sequencing, our analysis revealed that bacterial richness and evenness gradually declined downriver in both the free-living and particle-associated bacterial communities. These shifts were also supported by beta diversity analysis, where the effects of tributaries were negligible in regards to the overall variation. In addition, the river was largely dominated by bacteria that are commonly observed in freshwaters. Dominated by the acI lineage, the freshwater SAR11 (LD12) and the Polynucleobacter group, typical freshwater taxa increased in proportion downriver and were accompanied by a decrease in soil and groundwater-affiliated bacteria. Based on views of the metacommunity and River Continuum Concept, we interpret the observed taxonomic patterns and accompanying changes in alpha and beta diversity with the intention of laying the foundation for a unified concept for river bacterioplankton diversity.
N-type PbS colloidal-quantum-dot (CQD) films are fabricated using a controlled halide chemical treatment, applied in an inert processing ambient environment. The new materials exhibit a mobility of 0.1 cm(2) V(-1) s(-1) . The halogen ions serve both as a passivating agent and n-dope the films via substitution at surface chalcogen sites. The majority electron concentration across the range 10(16) to 10(18) cm(-3) is varied systematically.
A new solution-phase halide passivation strategy to improve the electronic properties of colloidal quantum dot films is reported. We prove experimentally that the approach leads to an order-of-magnitude increase in mobility and a notable reduction in trap state density. We build solar cells having the highest efficiency (6.6%) reported using all-inorganic colloidal quantum dots. The improved photocurrent results from increased efficiency of collection of infrared-generated photocarriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.