Abstract:Cancer is one of the biggest challenges facing the medical research in our time. The goals are to improve not only the therapeutic outcome, even in the cases of advanced and metastatic cancer, but also the methods of treatment, which often have considerable adverse effects. In addition, the current developments, such as demographic change, population growth, and increasing healthcare costs, have to be taken into consideration. In all likelihood, nanotechnology and, in particular, the use of magnetic nanoparticles consisting of the elements nickel, cobalt, and iron can make a significant contribution. The greatest potential can be ascribed to the drug delivery systems: magnetic nanoparticles are functionalized by binding them to various substances, including chemotherapeutic agents, radionuclides, nucleic acids, and antibodies. They can then be guided and accumulated using a magnetic field. Hyperthermia can be induced with an alternating magnetic field, providing another therapeutic option. Magnetic nanoparticles may be useful in overcoming cancer drug resistance. They also contribute to realizing a combination of diagnostic investigation and therapy in the field of " theranostics " . The multifaceted and promising results of research in the recent years offer the prospect of a real advance in cancer therapy in the near future.
The use of nanoparticles in tumor imaging, molecular imaging, and drug delivery has significantly expanded in the last few years. The relatively new field of " theranostics " combines their capacity for drug delivery with their potential as contrast agents. Depending on the imaging modality used, several types of nanoparticles are available, such as gold for optical imaging or superparamagnetic iron oxide for magnetic resonance imaging. This review will give a short overview of the different types of nanoparticles as well as their development and potential application in recent years. Furthermore, it describes the research on classic imaging modalities as well as on new techniques to image nanoparticles in vivo and focuses on magnetic-based imaging modalities.
Well-tuned bioinspired mineralization via liquid mineral precursors yields ultra-smooth, space-filling bodies, transgressing the supremum of packing densities of nonclassical crystallization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.