Despite recent successes, patients suffering from locked-in syndrome (LIS) still struggle to communicate using vision-independent brain–computer interfaces (BCIs). In this study, we compared auditory and tactile BCIs, regarding training effects and cross-stimulus-modality transfer effects, when switching between stimulus modalities. We utilized a streaming-based P300 BCI, which was developed as a low workload approach to prevent potential BCI-inefficiency. We randomly assigned 20 healthy participants to two groups. The participants received three sessions of training either using an auditory BCI or using a tactile BCI. In an additional fourth session, BCI versions were switched to explore possible cross-stimulus-modality transfer effects. Both BCI versions could be operated successfully in the first session by the majority of the participants, with the tactile BCI being experienced as more intuitive. Significant training effects were found mostly in the auditory BCI group and strong evidence for a cross-stimulus-modality transfer occurred for the auditory training group that switched to the tactile version but not vice versa. All participants were able to control at least one BCI version, suggesting that the investigated paradigms are generally feasible and merit further research into their applicability with LIS end-users. Individual preferences regarding stimulus modality should be considered.
There continues to be difficulties when it comes to replication of studies in the field of Psychology. In part, this may be caused by insufficiently standardized analysis methods that may be subject to state dependent variations in performance. In this work, we show how to easily adapt the two-layer feedforward neural network architecture provided by Huang1 to a behavioral classification problem as well as a physiological classification problem which would not be solvable in a standardized way using classical regression or “simple rule” approaches. In addition, we provide an example for a new research paradigm along with this standardized analysis method. This paradigm as well as the analysis method can be adjusted to any necessary modification or applied to other paradigms or research questions. Hence, we wanted to show that two-layer feedforward neural networks can be used to increase standardization as well as replicability and illustrate this with examples based on a virtual T-maze paradigm2–5 including free virtual movement via joystick and advanced physiological data signal processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.