This paper investigates the implications of using modern superscalar processors in the safety-critical domain. Firstly, a description of current certification practice and devices is given as background. This is followed by an exposition of the certification argument for a processor when used in a safetycritical application. Throughout the presentation of the argument two types of modern processor are considered, commercial off-the-shelf (COTS) processors and purpose-designed bespoke devices. This allows the elaboration of positive and negative features of processors that can be used as part of the selection (for COTS) or design (for bespoke) process.
Component-based and modular software development techniques have become established in recent years. Without complementary verification and certification methods the benefits of these development techniques are reduced. As part of certification, it is necessary to show a system is acceptably safe which subsumes both the normal and abnormal (failure) cases. However, nonfunctional properties, such as safety and failures, are abstraction breakers, cutting across multiple components. Also, much of the work on component-based engineering has been applied to software-based systems rather than field programmable gate array (FPGA)-based systems whose use is becoming more popular in industry. In this paper, we show how a modular design embedded on a FPGA can be exhaustively analyzed (from a safety perspective) to derive the failure and safety properties to give the evidence needed for a safety case. The specific challenges faced are analyzing the fault characteristics of individual electronic components, combining the results across software modules, and then feeding this into a system safety case. A secondary benefit of taking this approach is that there is less uncertainty in the performance of the device, hence, it can be used for higher integrity systems. Finally, design improvements can be specifically targeted at areas of safety concern, leading to more optimal utilization of the FPGA device.Index Terms-Component-based, field programmable gate arrays (FPGAs), safety analysis.
For a large and complex safety-critical system, where safety is ensured by a strict control over many properties, the safety information is structured into a safety case. As a small change to the system design may potentially affect a large section of the safety argumentation, a systematic method for evaluating the impact of system changes on the safety argumentation would be valuable.We have chosen two of the most common notations: the Goal Structuring Notation (GSN) for the safety argumentation and the Architecture Analysis and Design Language (AADL) for the system architecture model. In this paper, we address the problem of impact analysis by introducing the GSN and AADL Graph Evaluation (GAGE) method that maps safety argumentation structure against system architecture, which is also a prerequisite for successful composition of modular safety cases.In order to validate the method, we have implemented the GAGE tool that supports the mapping between the GSN and AADL notations and highlight changes in impact on the argumentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.