Gastrointestinal microbial communities are increasingly being implicated in host susceptibilities to nutritional/metabolic diseases; such conditions are more prevalent in obese and/or older horses. This controlled study evaluated associations between host-phenotype and the fecal microbiome / metabolome. Thirty-five, Welsh Mountain pony mares were studied across 2 years (Controls, n = 6/year, 5–15 years, Body Condition Score (BCS) 4.5–6/9; Obese, n = 6/year, 5–15 years, BCS > 7/9; Aged, n = 6 Year 1; n = 5 Year 2, ≥19 years old). Animals were individually fed the same hay to maintenance (2% body mass as daily dry matter intake) for 2 (aged / obese) or 4 (control), 4-week periods in a randomized study. Outset phenotype was determined (body fat%, markers of insulin sensitivity). Feces were sampled on the final 3 days of hay feeding-periods and communities determined using Next Generation Sequencing of amplified V1–V2 hypervariable regions of bacterial 16S rRNA. Copy numbers for fecal bacteria, protozoa and fungi were similar across groups, whilst bacterial diversity was increased in the obese group. Dominant bacterial phyla in all groups were Bacteroidetes > Firmicutes > Fibrobacter. Significant differences in the bacterial communities of feces were detected between host-phenotype groups. Relative to controls, abundances of Proteobacteria were increased for aged animals and Bacteroidetes, Firmicutes, and Actinobacteria were increased for obese animals. Over 500 bacterial operational taxonomic units (OTUs) differed significantly between host-phenotype groups. No consistent pattern of changes in discriminant OTUs between groups were maintained across groups and between years. The core bacterial populations contained 21 OTUs, 6.7% of recovered sequences. Distance-based Redundancy Analyses separated fecal bacterial communities with respect to markers of obesity and insulin dysregulation, as opposed to age. Host-phenotype had no impact on the apparent digestibility of dietary GE or DM, fecal volatile fatty acid concentrations or the fecal metabolome (FT-IR). The current study demonstrates that host-phenotype has major effects on equine fecal microbial population structure. Changes were predominantly associated with the obese state, confirming an obesity-associated impact in the absence of nutritional differences. Clear biomarkers of animal-phenotype were not identified within either the fecal microbiome or metabolome, suggesting functional redundancy within the gut microbiome and/or metabolome.
Background: Obesity is an important equine welfare issue. Whilst dietary restriction is the most effective weight-loss tool, individual animals range in their weight-loss propensity. Gastrointestinal-derived bacteria play a fundamental role in host-health and have been associated with obesity and weight-loss in other species. This study evaluated the faecal microbiome (next-generation sequencing of 16S rRNA genes) of 15 obese Welsh Mountain pony mares, in the same 11-week period across 2 years (n = 8 Year 1; n = 7 Year 2). Following a 4-week acclimation period (pre-diet phase) during which time individuals were fed the same hay to maintenance (2% body mass (BM) as daily dry matter (DM) intake), animals underwent a 7-week period of dietary restriction (1% BM hay as daily DM intake). Faeces were sampled on the final 3 days of the pre-diet phase and the final 3 days of the dietary restriction phase. Bacterial communities were determined using Next Generation Sequencing of amplified V1-V2 hypervariable regions of bacterial 16S rRNA. Results: Losses in body mass ranged from 7.11 to 11.59%. Changes in the faecal microbiome composition following weight-loss included a reduction in the relative abundance of Firmicutes and Tenericutes and a reduction in indices of bacterial diversity. Pre-diet diversity was negatively associated with weight-loss. Pre-diet faecal acetate concentration was a strong predictor of subsequent weight-loss and negatively associated with Sphaerochaeta (Spirochaetes phylum) abundance. When animals were divided into 3 groups (high, mid, low) based overall weight loss, pre-diet bacterial community structure was found to have the greatest divergence between the high and low weight-loss groups (R = 0.67, p < 0.01), following PERMANOVA and ANOSIM analysis. Conclusions: Weight-loss in this group of ponies was associated with lower pre-diet faecal bacterial diversity and greater pre-diet acetate concentration. Overall, these data support a role for the faecal microbiome in weight-loss propensity in ponies and provide a baseline for research evaluating elements of the faecal microbiome in predicting weight-loss success in larger cohorts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.