Abstract. The paper studies a distributed implementation method for the BIP (Behavior, Interaction, Priority) component framework for modeling heterogeneous systems. BIP offers two powerful mechanisms for describing composition of components by combining interactions and priorities. A system model is layered. The lowest layer contains atomic components; the second layer, describes possible interactions between atomic components; the third layer includes priorities between the interactions. The current implementation of BIP is based on global state operational semantics. An Engine directly interprets the operational semantics rules and computes the possible interactions between atomic components from global states. The implementation method is a translation from BIP models into distributed models involving two steps. The first translates BIP models into partial state models where are known only the states of the components which are ready to communicate. The second implements interactions in the partial state model by using message passing primitives. The main results of the paper are conditions for which the three models are observationally equivalent. We show that in general, the translation from global state to partial state models does not preserve observational equivalence. Preservation can be achieved by strengthening the premises of the operational semantics rules by an oracle. This is a predicate depending on the priorities of the BIP model. We show that there are many possible choices for oracles. Maximal parallelism is achieved for dynamic oracles allowing interaction as soon as possible. Nonetheless, these oracles may entail considerable computational overhead. We study performance trade-offs for different types of oracles. Finally, we provide experimental results illustrating the application of the theory on a prototype implementation.
The Kell Calculus is a family of process calculi intended as a basis for studying distributed component-based programming. This paper presents an abstract machine for an instance of this calculus, a proof of its correctness, and a prototype OCaml implementation. The main originality of our abstract machine is that it does not mandate a particular physical configuration (e.g. mapping of localities to physical sites), and it is independent of any supporting network services. This allows to separate the proof of correctness of the abstract machine per se, from the proof of correctness of higher-level communication and migration protocols which can be implemented on the machine.
Abstract. This paper 1 presents the Kell calculus, a new distributed process calculus that retains the original insights of the Seal calculus (local actions, process replication) and of the M-calculus (higherorder processes and programmable membranes), although in a much simpler setting than the latter. The calculus is equipped with a type system that enforces a unicity property for location names that is crucial for the efficient implementation of the calculus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.