circuits, and a modified terrain with eroded trails from a terrain, climatic conditions, and species with related biological information. We introduce the Resource Access Graph, a new data structure that encodes both interactions between food chain levels and animals traveling between resources over the terrain. A novel competition algorithm operating on this data progressively computes a steady-state solution up the food chain, from plants to carnivores. The user can explore the resulting landscape, where plants and animals are instantiated on the fly, and interactively edit it by over-painting the maps. Our results show that our system enables the authoring of consistent landscapes where the impact of wildlife is visible through animated animals, clearings in the vegetation, and eroded trails. We provide quantitative validation with existing ecosystems and a user-study with expert paleontologist end-users, showing that our system enables them to author and compare different ecosystems illustrating climate changes over the same terrain while enabling relevant visual immersion into consistent landscapes.CCS Concepts: • Computing methodologies → Procedural animation.
We present a novel method for authoring landscapes with flora and fauna while considering their mutual interactions. Our algorithm outputs a steady-state ecosystem in the form of density maps for each species, their daily circuits, and a modified terrain with eroded trails from a terrain, climatic conditions, and species with related biological information. We introduce the Resource Access Graph, a new data structure that encodes both interactions between food chain levels and animals traveling between resources over the terrain. A novel competition algorithm operating on this data progressively computes a steady-state solution up the food chain, from plants to carnivores. The user can explore the resulting landscape, where plants and animals are instantiated on the fly, and interactively edit it by over-painting the maps. Our results show that our system enables the authoring of consistent landscapes where the impact of wildlife is visible through animated animals, clearings in the vegetation, and eroded trails. We provide quantitative validation with existing ecosystems and a user-study with expert paleontologist end-users, showing that our system enables them to author and compare different ecosystems illustrating climate changes over the same terrain while enabling relevant visual immersion into consistent landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.