Short α-helical peptides stabilized by linkages between constituent amino acids offer an attractive format for ligand development. In recent years, a range of excellent ligands based on stabilized α-helices were generated by rational design using α-helical peptides of natural proteins as templates. Herein, we developed a method to engineer chemically stabilized α-helical ligands in a combinatorial fashion. In brief, peptides containing cysteines in position i and i + 4 are genetically encoded by phage display, the cysteines are modified with chemical bridges to impose α-helical conformations, and binders are isolated by affinity selection. We applied the strategy to affinity mature an α-helical peptide binding β-catenin. We succeeded in developing ligands with Kd's as low as 5.2 nM, having >200-fold improved affinity. The strategy is generally applicable for affinity maturation of any α-helical peptide. Compared to hydrocarbon stapled peptides, the herein evolved thioether-bridged peptide ligands can be synthesized more easily, as no unnatural amino acids are required and the cyclization reaction is more efficient and yields no stereoisomers. A further advantage of the thioether-bridged peptide ligands is that they can be expressed recombinantly as fusion proteins.
Inhibition of coagulation factor XII (FXII) activity represents an attractive approach for the treatment and prevention of thrombotic diseases. The few existing FXII inhibitors suffer from low selectivity. Using phage display combined to rational design, we developed a potent inhibitor of FXII with more than 100-fold selectivity over related proteases. The highly selective peptide macrocycle is a promising candidate for the control of FXII activity in antithrombotic therapy and a valuable tool in hematology research.
Proteolytically stable peptide architectures are required for the development of long-acting peptide therapeutics. In this work, we found that a phage-selected bicyclic peptide antagonist exhibits an unusually high stability in vivo and subsequently deciphered the underlying mechanisms of peptide stabilization. We found that the bicyclic peptide was significantly more stable than its constituent rings synthesized as two individual macrocycles. The two rings protect each other from proteolysis when linked together, conceivably by constraining the conformation and/or by mutually shielding regions prone to proteolysis. A second stabilization mechanism was found when the bicyclic peptide was linked to an albumin-binding peptide to prevent its rapid renal clearance. The bicyclic peptide conjugate not only circulated 50-fold longer (t(1/2) = 24 h) but also became entirely resistant to proteolysis when tethered to the long-lived serum protein. The bicyclic peptide format overcomes a limitation faced by many peptide leads and appears to be suitable for the generation of long-acting peptide therapeutics.
To extend the plasma half-life of a bicyclic peptide antagonist, we chose to link it to the Fc fragment of the long-lived serum protein IgG1. Instead of chemically conjugating the entire bicyclic peptide, we recombinantly expressed its peptide moiety as a fusion protein to an Fc fragment and subsequently cyclized the peptide by chemically reacting its three cysteine residues with tris-(bromomethyl)benzene. This reaction was efficient and selective, yielding completely modified peptide fusion protein and no side products. After optimization of the linker and the Fc fragment format, the bicyclic peptide was fully functional as an inhibitor (K(i) = 76 nM) and showed an extended terminal half-life of 1.5 days in mice. The unexpectedly clean reaction makes chemical macrocyclization of peptide-Fc fusion proteins an attractive synthetic approach. Its good compatibility with the Fc fragment may lend the bromomethylbenzene-based chemistry also for the generation of antibody-drug conjugates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.