Experimental studies of primordial metabolic evolution are based on multi-component reactions which typically result in highly complex product mixtures. The detection and structural assignment of these products crucially depends on sensitive and selective analytical procedures. Progress in the instrumentation of these methods steadily lowered the detection limits to concentrations in the pico molar range. At the same time, conceptual improvements in chromatography, nuclear magnetic resonance (NMR) and mass spectrometry dramatically increased the resolution power as well as throughput, now, allowing the simultaneous detection and structural determination of hundreds to thousands of compounds in complex mixtures. In retrospective, the development of these analytical methods occurred stepwise in a kind of evolutionary process that is reminiscent of steps occurring in the evolution of metabolism under chemoautotrophic conditions. This can be nicely exemplified in the analytical procedures used in our own studies that are based on Wächtershäuser’s theory for metabolic evolution under Fe/Ni-catalyzed volcanic aqueous conditions. At the onset of these studies, gas chromatography (GC) and GC-MS (mass spectrometry) was optimized to detect specific low molecular weight products (<200 Da) in a targeted approach, e.g., methyl thioacetate, amino acids, hydroxy acids, and closely related molecules. Liquid chromatography mass spectrometry (LC-MS) was utilized for the detection of larger molecules including peptides exceeding a molecular weight of 200 Da. Although being less sensitive than GC-MS or LC-MS, NMR spectroscopy benefitted the structural determination of relevant products, such as intermediates involved in a putative primordial peptide cycle. In future, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) seems to develop as a complementary method to analyze the compositional space of the products and reaction clusters in a non-targeted approach at unprecedented sensitivity and mass resolution (700,000 for m/z 250). Stable isotope labeling was important to differentiate between reaction products and artifacts but also to reveal the mechanisms of product formation. In this review; we summarize some of the developmental steps and key improvements in analytical procedures mainly used in own studies of metabolic evolution.
A historical beer, dated to the German Empire era, was recently found in northern Germany. Its chemical composition represents a unique source of insights into brewing culture of the late nineteenth century when pioneer innovations laid the foundations for industrial brewing. Complementary analytics including metabolomics, microbiological, sensory, and beer attribute analysis revealed its molecular profile and certify the unprecedented good storage condition even after 130 years in the bottle. Comparing its chemical signature to that of four hundred modern brews allowed to describe molecular fingerprints teaching us about technological aspects of historical beer brewing. Several critical production steps such as malting and germ treatment, wort preparation and fermentation, filtration and storage, and compliance with the Bavarian Purity Law left detectable molecular imprints. In addition, the aging process of the drinkable brew could be analyzed on a chemical level and resulted in an unseen diversity of hops- and Maillard-derived compounds. Using this archeochemical forensic approach, the historical production process of a culturally significant beverage could be traced and the ravages of time made visible.
Identification of chemically modified peptides in mass spectrometry (MS)-based glycation studies is a crucial yet challenging task. There is a need to establish a mode for matching tandem mass spectrometry (MS/MS) data, allowing for both known and unknown peptide glycation modifications. We present an open search approach that uses classic and modified peptide fragment ions. The latter are shifted by the mass delta of the modification. Both provide key structural information that can be used to assess the peptide core structure of the glycation product. We also leverage redundant neutral losses from the modification side chain, introducing a third ion class for matching referred to as characteristic fragment ions. We demonstrate that peptide glycation product MS/MS spectra contain multidimensional information and that most often, more than half of the spectral information is ignored if no attempt is made to use a multi-step matching algorithm. Compared to regular and/or modified peptide ion matching, our triple-ion strategy significantly increased the median interpretable fraction of the glycation product MS/MS spectra. For reference, we apply our approach for Amadori product characterization and identify all established diagnostic ions automatically. We further show how this method effectively applies the open search concept and allows for optimized elucidation of unknown structures by presenting two hitherto undescribed peptide glycation modifications with a delta mass of 102.0311 and 268.1768 Da. We characterize their fragmentation signature by integration with isotopically labeled glycation products, which provides high validity for non-targeted structure identification.
Many essential building blocks of life, including amino acids, sugars, and nucleosides, require aldehydes for prebiotic synthesis. Pathways for their formation under early earth conditions are therefore of great importance. We investigated the formation of aldehydes by an experimental simulation of primordial early earth conditions, in line with the metal-sulfur world theory in an acetylene-containing atmosphere. We describe a pH-driven, intrinsically autoregulatory environment that concentrates acetaldehyde and other higher molecular weight aldehydes. We demonstrate that acetaldehyde is rapidly formed from acetylene over a nickel sulfide catalyst in an aqueous solution, followed by sequential reactions progressively increasing the molecular diversity and complexity of the reaction mixture. Interestingly, through inherent pH changes, the evolution of this complex matrix leads to auto-stabilization of de novo synthesized aldehydes and alters the subsequent synthesis of relevant biomolecules rather than yielding uncontrolled polymerization products. Our results emphasize the impact of progressively generated compounds on the overall reaction conditions and strengthen the role of acetylene in forming essential building blocks that are fundamental for the emergence of terrestrial life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.