The increasing global emergence of multidrug resistant (MDR) pathogens is categorized as one of the most important health problems. Therefore, the discovery of novel antimicrobials is of the utmost importance. Lichens provide a rich source of natural products including unique polyketides and polyphenols. Many of them display pharmaceutical benefits. The aim of this study was directed towards the characterization of sunflower oil extracts from the fruticose lichen, Usnea barbata. The concentration of the major polyketide, usnic acid, was 1.6 mg/mL extract as determined by NMR analysis of the crude mixture corresponding to 80 mg per g of the dried lichen. The total phenolics and flavonoids were determined by photometric assays as 4.4 mg/mL (gallic acid equivalent) and 0.27 mg/mL (rutin equivalent) corresponding to 220 mg/g and 13.7 mg/g lichen, respectively. Gram-positive (e.g., Enterococcus faecalis) and Gram-negative bacteria, as well as clinical isolates of infected chickens were sensitive against these extracts as determined by agar diffusion tests. Most of these activities increased in the presence of zinc salts. The data suggest the potential usage of U. barbata extracts as natural additives and mild antibiotics in animal husbandry, especially against enterococcosis in poultry.
Carbon fixation, in addition to the evolution of metabolism, is a main requirement for the evolution of life. Here, we report a one-pot carbon fixation of acetylene (C2H2) and carbon monoxide (CO) by aqueous nickel sulfide (NiS) under hydrothermal (>100 °C) conditions. A slurry of precipitated NiS converts acetylene and carbon monoxide into a set of C2–4-products that are surprisingly representative for C2–4-segments of all four central CO2-fixation cycles of the domains Bacteria and Archaea, whereby some of the products engage in the same interconversions, as seen in the central CO2-fixation cycles. The results suggest a primordial, chemically predetermined, non-cyclic acetyleno/carboxydotrophic core metabolism. This metabolism is based on aqueous organo–metal chemistry, from which the extant central CO2-fixation cycles based on thioester chemistry would have evolved by piecemeal modifications.
Bacopa monnieri is an Ayurvedic plant with rising interest in the pharmacological effects of its extract and constituents, including flavonoids, saponins, and triterpenes such as cucurbitacins, betulinic acid, and bacosine. The latter two compounds are isomeric 3-hydroxy lupenoic acids, which vary only in the arrangement of the carboxylic acid group and the methyl group at C-27 and C-28 and the orientation of the hydroxy group at C-3. In this study, we have reinvestigated the contents of betulinic acid and bacosine, respectively, in extracts from various commercially available B. monnieri powders and food supplements. To our surprise, HPLC-ion trap time-of-flight analyses identified only betulinic acid, but not bacosine, in all extracts under study, which was verified by GC-MS, HPLC-ELSD, 1D NMR (1H,13C), and 2D NMR (1H,1H COSY, 1H,13C HMBC, 1H,13C HSQC, 1H,1H NOESY) experiments. Moreover, it turned out that commercially available reference samples of bacosine were structurally identical with betulinic acid.
Lichen secondary metabolites show important biological activities as well as pharmaceutical and chemotaxonomic potential. In order to utilize such substances of interest, detailed knowledge of their biosynthetic pathways is essential. 13 CO 2 -pulse/chase experiments using intact thalli of the lichen Usnea dasopoga resulted in multiple 13 C-labeled isotopologs in amino acids, but not in the dibenzofuran derivative usnic acidone of the best-studied lichen metabolites, with considerable and renewed interest for pharmaceutical and lifestyle applications.Spraying an aqueous solution of [U-13 C 6 ]glucose onto the thalli of U. dasopoga afforded a specific mixture of multiple 13 C-labeled isotopologs in usnic acid. One-and two-dimensional NMR analysis of the crude lichen extract corroborated the polyketide biosynthetic pathway via methylphloroacetophenone but not via phloroacetophenone.With usnic acid as an exemplar, we provide proof-of-principle experiments that can be used in general to study metabolic pathways and fluxes in intact lichens.
Experimental studies of primordial metabolic evolution are based on multi-component reactions which typically result in highly complex product mixtures. The detection and structural assignment of these products crucially depends on sensitive and selective analytical procedures. Progress in the instrumentation of these methods steadily lowered the detection limits to concentrations in the pico molar range. At the same time, conceptual improvements in chromatography, nuclear magnetic resonance (NMR) and mass spectrometry dramatically increased the resolution power as well as throughput, now, allowing the simultaneous detection and structural determination of hundreds to thousands of compounds in complex mixtures. In retrospective, the development of these analytical methods occurred stepwise in a kind of evolutionary process that is reminiscent of steps occurring in the evolution of metabolism under chemoautotrophic conditions. This can be nicely exemplified in the analytical procedures used in our own studies that are based on Wächtershäuser’s theory for metabolic evolution under Fe/Ni-catalyzed volcanic aqueous conditions. At the onset of these studies, gas chromatography (GC) and GC-MS (mass spectrometry) was optimized to detect specific low molecular weight products (<200 Da) in a targeted approach, e.g., methyl thioacetate, amino acids, hydroxy acids, and closely related molecules. Liquid chromatography mass spectrometry (LC-MS) was utilized for the detection of larger molecules including peptides exceeding a molecular weight of 200 Da. Although being less sensitive than GC-MS or LC-MS, NMR spectroscopy benefitted the structural determination of relevant products, such as intermediates involved in a putative primordial peptide cycle. In future, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) seems to develop as a complementary method to analyze the compositional space of the products and reaction clusters in a non-targeted approach at unprecedented sensitivity and mass resolution (700,000 for m/z 250). Stable isotope labeling was important to differentiate between reaction products and artifacts but also to reveal the mechanisms of product formation. In this review; we summarize some of the developmental steps and key improvements in analytical procedures mainly used in own studies of metabolic evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.