Values of the temperature coefficient of the refractive index were obtained from the derivation of a simple relation between energy band-gap and refractive index in semiconductors. These values, (dn/dT)/n, were compared to the experimental data found in literature. Our model, with only one fitting parameter dB/dT=2.5×10−5 K−1 for all semiconductors, results in the best agreement with experimental data.
The objective of this work is to improve the knowledge of the shock-to-detonation transition of nitromethane. The study is based on a spectral analysis in the range 0.3-0.85 µm, with a 28-nm resolution, during experi-ments of plane shock impacts on explosive targets at 8.6 GPa. The time-resolved radiant spectra show that the detonation front, the reaction products produced during the superdetonation, and the detonation products are semitransparent. The temperature and absorption coefficient profiles are determined from the measured spectra by a mathematical inversion method based on the equation of radiative transfer with Rayleigh scattering regime. Shocked nitromethane reaches at least 2500 K, showing the existence of local chemical reactions after shock entrance. Levels of temperature of superdetonation and steady-state detonation are also determined.
Nonintrusive systems for the measurement on test rigs of aeroengine exhaust emissions required for engine certification (CO, NO(x), total unburned hydrocarbon, and smoke), together with CO(2) and temperature have been developed. These results have been compared with current certified intrusive measurements on an engine test. A spectroscopic database and data-analysis software has been developed to enable Fourier-transform Infrared measurement of concentrations of molecular species. CO(2), CO, and NO data showed agreement with intrusive techniques of approximately ?30%. A narrow-band spectroscopic device was used to measure CO(2) (with deviations of less than ?10% from the intrusive measurement), whereas laser-induced incandescence was used to measure particles. Future improvements to allow for the commercial use of the nonintrusive systems have been identified and the methods are applicable to any measurement of combustion emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.