The occurrence of a substantial pool of cysteinylated and glutathionylated forms of polyfunctional thiols has been evidenced for several dual-purpose hop varieties, and so is the ability of Saccharomyces cerevisiae yeast to release free thiols from these forms through fermentation. The present work aimed to investigate the effect of temperature, wort density, maturation time, and strain on the efficiency of free thiol release by S. cerevisiae yeasts. Model media at 12, 15, or 17°P were spiked with three cysteinylated (Cys-) or three glutathionylated (G-) sulfanylalkyl alcohols (Cys-or G-3-sulfanylpentan-1-ol, 3-sulfanyl-4-methylpentan-1-ol, and 3sulfanylhexan-1-ol), fermented for 7 days at 18, 24, and 28 °C, and kept at 4 °C for varying number of days. The released sulfanylalkyl alcohols and their corresponding acetates were extracted with a Ag-ion SPE cartridge and analyzed by gas chromatography−pulsed-flame photometric detection. The wort density and yeast strain greatly affected the acetate/alcohol ratio. This ratio varied from 1 to 80% according to the yeast strain and was at its highest at 17°P and 24 °C. Maturation appeared as the crucial step for free thiol excretion from yeast cells (no thiol was recovered in the fermented worts without maturation). Among the five yeasts tested, the yeast strain SafAle K-97 released the highest level of sulfanylalkyl alcohols into the medium (up to 0.45% of the added cysteinylated adducts and 0.08% of the glutathionylated adducts), whereas S-33 or S-04 should be preferred when release of esters is sought out (release efficiencies up to 0.35% from cysteinylated adducts and 0.02% from glutathionylated adducts are observed if both the alcohol and its acetate are considered).
The contribution of polyfunctional thiols (PFTs) to the overall flavor of a lager beer has been well documented, but their origin remains unclear. In comparison with Saccharomyces cerevisiae strains previously investigated (same conditions: 7 days at 24 °C, 3 days at 4 °C), we examined how Saccharomyces pastorianus yeasts are able to produce these PFTs from cysteinylated (Cys-) and glutathionylated (G-) conjugates. Up to 0.35% release was observed from G-conjugates against less than 0.08% for all yeasts studied so far. Lowering the wort nitrogen level and the fermentation temperature (12 °C) strongly increased the release efficiency and the ester/alcohol ratio from Cys-conjugates. However, it did not improve the release from G-conjugates and even prevented the yeast from producing any acetate. Although poor in free PFTs and their Cys-precursors, both Saaz hop and pale malt (classical ingredients for premium lager beers) confirmed to be significant sources of G-conjugates (especially those of 3-sulfanylhexanol and 3-sulfanyl-4-methylpentanol).
Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.