After evidence of the cysteinylated precursors of 3-sulfanyl-4-methylpentan-1-ol (Cys-26) and 3-sulfanylhexan-1ol (Cys-23) in hop, S-glutathione precursors (G-23 and G-26) were recently discovered in different dual-purpose hop varieties. Because free 3-sulfanylpentan-1-ol (21) has also been detected in hop, the present work aimed to identify its potential precursors. The compounds S-3-(1-hydroxylpentyl)cysteine (Cys-21) and S-3-(1-hydroxylpentyl)glutathione (G-21) were first synthesized and characterized by nuclear magnetic resonance and high-resolution mass spectrometry. High-performance liquid chromatography−positive electrospray ionization−tandem mass spectrometry evidenced both for the first time in hop. Both S conjugates were further quantitated in six hop samples: the well-known Saaz, Amarillo, Citra, Hallertau Blanc, Nelson Sauvin, and Polaris. Similar to G-23, G-21 appeared ubiquitous to all varieties. Of all of the samples investigated here, Citra (harvest 2017) emerged as the richest in G-21, with 18 mg/kg of dry matter. Cys-21 was found in all samples at a much lower concentration (up to 0.2 mg/kg of dry matter in Polaris, harvest 2017). Model media spiked with Cys-21 or G-21 allowed for the confirmation that brewing yeast is able to release free compound 21 from them.
The occurrence of a substantial pool of cysteinylated and glutathionylated forms of polyfunctional thiols has been evidenced for several dual-purpose hop varieties, and so is the ability of Saccharomyces cerevisiae yeast to release free thiols from these forms through fermentation. The present work aimed to investigate the effect of temperature, wort density, maturation time, and strain on the efficiency of free thiol release by S. cerevisiae yeasts. Model media at 12, 15, or 17°P were spiked with three cysteinylated (Cys-) or three glutathionylated (G-) sulfanylalkyl alcohols (Cys-or G-3-sulfanylpentan-1-ol, 3-sulfanyl-4-methylpentan-1-ol, and 3sulfanylhexan-1-ol), fermented for 7 days at 18, 24, and 28 °C, and kept at 4 °C for varying number of days. The released sulfanylalkyl alcohols and their corresponding acetates were extracted with a Ag-ion SPE cartridge and analyzed by gas chromatography−pulsed-flame photometric detection. The wort density and yeast strain greatly affected the acetate/alcohol ratio. This ratio varied from 1 to 80% according to the yeast strain and was at its highest at 17°P and 24 °C. Maturation appeared as the crucial step for free thiol excretion from yeast cells (no thiol was recovered in the fermented worts without maturation). Among the five yeasts tested, the yeast strain SafAle K-97 released the highest level of sulfanylalkyl alcohols into the medium (up to 0.45% of the added cysteinylated adducts and 0.08% of the glutathionylated adducts), whereas S-33 or S-04 should be preferred when release of esters is sought out (release efficiencies up to 0.35% from cysteinylated adducts and 0.02% from glutathionylated adducts are observed if both the alcohol and its acetate are considered).
The contribution of polyfunctional thiols (PFTs) to the overall flavor of a lager beer has been well documented, but their origin remains unclear. In comparison with Saccharomyces cerevisiae strains previously investigated (same conditions: 7 days at 24 °C, 3 days at 4 °C), we examined how Saccharomyces pastorianus yeasts are able to produce these PFTs from cysteinylated (Cys-) and glutathionylated (G-) conjugates. Up to 0.35% release was observed from G-conjugates against less than 0.08% for all yeasts studied so far. Lowering the wort nitrogen level and the fermentation temperature (12 °C) strongly increased the release efficiency and the ester/alcohol ratio from Cys-conjugates. However, it did not improve the release from G-conjugates and even prevented the yeast from producing any acetate. Although poor in free PFTs and their Cys-precursors, both Saaz hop and pale malt (classical ingredients for premium lager beers) confirmed to be significant sources of G-conjugates (especially those of 3-sulfanylhexanol and 3-sulfanyl-4-methylpentanol).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.