Vision is difficult because images are ambiguous about the structure of the world. For object color, the ambiguity arises because the same object reflects a different spectrum to the eye under different illuminations. Human vision typically does a good job of resolving this ambiguity-an ability known as color constancy. The past 20 years have seen an explosion of work on color constancy, with advances in both experimental methods and computational algorithms. Here, we connect these two lines of research by developing a quantitative model of human color constancy. The model includes an explicit link between psychophysical data and illuminant estimates obtained via a Bayesian algorithm. The model is fit to the data through a parameterization of the prior distribution of illuminant spectral properties. The fit to the data is good, and the derived prior provides a succinct description of human performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.