This review article addresses the dynamics and control of low-frequency unsteadiness, as observed in some aerodynamic applications. It presents a coherent and rigorous linearized approach, which enables both to describe the dynamics of commonly encountered open-flows and to design open-loop and closed-loop control strategies, in view of suppressing or delaying instabilities. The approach is global in the sense that both cross-stream and streamwise directions are discretized in the evolution operator. New light will therefore be shed on the streamwise properties of open-flows. In the case of oscillator flows, the unsteadiness is due to the existence of unstable global modes, i.e., unstable eigenfunctions of the linearized Navier–Stokes operator. The influence of nonlinearities on the dynamics is studied by deriving nonlinear amplitude equations, which accurately describe the dynamics of the flow in the vicinity of the bifurcation threshold. These equations also enable us to analyze the mean flow induced by the nonlinearities as well as the stability properties of this flow. The open-loop control of unsteadiness is then studied by a sensitivity analysis of the eigenvalues with respect to base-flow modifications. With this approach, we manage to a priori identify regions of the flow where a small control cylinder suppresses unsteadiness. Then, a closed-loop control approach was implemented for the case of an unstable open-cavity flow. We have combined model reduction techniques and optimal control theory to stabilize the unstable eigenvalues. Various reduced-order-models based on global modes, proper orthogonal decomposition modes, and balanced modes were tested and evaluated according to their ability to reproduce the input-output behavior between the actuator and the sensor. Finally, we consider the case of noise-amplifiers, such as boundary-layer flows and jets, which are stable when viewed in a global framework. The importance of the singular value decomposition of the global resolvent will be highlighted in order to understand the frequency selection process in such flows.
Direct numerical simulations (DNS) of the wake of a circular disk placed normal to a uniform flow show that, as the Reynolds number is increased, the flow undergoes a sequence of successive bifurcations, each state being characterized by specific time and space symmetry breaking or recovering (Fabre, Auguste & Magnaudet, Phys. Fluids, vol. 20 (5), 2008, p. 1). To explain this bifurcation scenario, we investigate the stability of the axisymmetric steady wake in the framework of the global stability theory. Both the direct and adjoint eigenvalue problems are solved. The threshold Reynolds numbers Re and characteristics of the destabilizing modes agree with the study of Natarajan & Acrivos (J. Fluid Mech., vol. 254, 1993, p. 323): the first destabilization occurs for a stationary mode of azimuthal wavenumber m = 1 at Re A c = 116.9, and the second destabilization of the axisymmetric flow occurs for two oscillating modes of azimuthal wavenumbers m ± 1 at Re B c = 125.3. Since these critical Reynolds numbers are close to one another, we use a multiple time scale expansion to compute analytically the leading-order equations that describe the nonlinear interaction of these three leading eigenmodes. This set of equations is given by imposing, at third order in the expansion, a Fredholm alternative to avoid any secular term. It turns out to be identical to the normal form predicted by symmetry arguments. Though, all coefficients of the normal form are here analytically computed as the scalar product of an adjoint global mode with a resonant third-order forcing term, arising from the second-order base flow modification and harmonics generation. We show that all nonlinear interactions between modes take place in the recirculation bubble, as the contribution to the scalar product of regions located outside the recirculation bubble is zero. The normal form accurately predicts the sequence of bifurcations, the associated thresholds and symmetry properties observed in the DNS calculations.
Global linear and nonlinear bifurcation analysis is used to revisit the spiral vortex breakdown of nominally axisymmetric swirling jets. For the parameters considered herein, stability analyses single out two unstable linear modes of azimuthal wavenumber $m= \ensuremath{-} 1$ and $m= \ensuremath{-} 2$, bifurcating from the axisymmetric breakdown solution. These modes are interpreted in terms of spiral perturbations wrapped around and behind the axisymmetric bubble, rotating in time in the same direction as the swirling flow but winding in space in the opposite direction. Issues are addressed regarding the role of these modes with respect to the existence, mode selection and internal structure of vortex breakdown, as assessed from the three-dimensional direct numerical simulations of Ruith et al. (J. Fluid Mech., vol. 486, 2003, pp. 331–378). The normal form describing the leading-order nonlinear interaction between modes is computed and analysed. It admits two stable solutions corresponding to pure single and double helices. At large swirl, the axisymmetric solution bifurcates to the double helix which remains the only stable solution. At low and moderate swirl, it bifurcates first to the single helix, and subsequently to the double helix through a series of subcritical bifurcations yielding hysteresis over a finite range of Reynolds numbers, the estimated bifurcation threshold being in good agreement with that observed in the direct numerical simulations. Evidence is provided that this selection is not to be ascribed to classical mean flow corrections induced by the existence of the unstable modes, but to a non-trivial competition between harmonics. Because the frequencies of the leading modes approach a strong $2$:$1$ resonance, an alternative normal form allowing interactions between the $m= \ensuremath{-} 2$ mode and the first harmonics of the $m= \ensuremath{-} 1$ mode is computed and analysed. It admits two stable solutions, the double helix already identified in the non-resonant case, and a single helix differing from that observed in the non-resonant case only by the presence of a slaved, phase-locked harmonic deformation. On behalf of the finite departure from the $2$:$1$ resonance, the amplitude of the slaved harmonic is however low, and the effect of the resonance on the bifurcation structure is merely limited to a reduction of the hysteresis range.
International audienceWe use adjoint-based gradients to analyze the sensitivity of turbulent wake past a D-shaped cylinder at Re = 13000. We assess the ability of a much smaller control cylinder in altering the shedding frequency, as predicted by the eigenfrequency of the most unstable global mode to the mean flow. This allows performing beforehand identification of the sensitive regions, i.e., without computing the actually controlled states. Our results obtained in the frame of 2-D, unsteady Reynolds-averaged Navier-Stokes compare favorably with experimental data reported by Parezanović and Cadot [J. Fluid Mech.693, 115 (2012)] and suggest that the control cylinder acts primarily through a local modification of the mean flow profiles
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.